Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s1=1+2+3+...+99
s1=99+98+...+1
2s1=100+100+....+100
2s1=100.99
s1=100.99:2=4950(mấy bài sau lam tương tự nha)
4+4^2+4^3+...+4^90 chia hết cho 21
=(4+4^2+4^3)+...+(4^88+4^89+4^90)
=84.1+(4^4+4^5+4^6+...+4^90)
vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21 (ĐPCM)
Bài 1 :
\(2^x.8=512\)
\(2^x=512:8\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
\(b,\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(c,x^{20}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(d,\left(x-3\right)^{10}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Bài 1:
a) \(x^{10}=1^x\Rightarrow\orbr{\begin{cases}x=1\\x=10\end{cases}}\)
b) \(x^{10}=x\Rightarrow x=1\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5.\left(2x-15\right)^3=\left(2x-15\right)^3\)
\(\left(2x-15\right)^2=1\Rightarrow x=8\)
Bài 2:
\(a;2^{16}=2^{13}\cdot2^3=2^{13}\cdot8>7\cdot2^{13}\)
\(b;49^8\cdot27^5=7^{16}\cdot3^{15}=21^{15}\cdot7>21^5\)
C;Ta có:\(199^{20}< 200^{20}=2^{20}\cdot10^{40}=2^{15}\cdot10^{40}\cdot2^5\)
\(2003^{15}>2000^{15}=2^{15}\cdot10^{45}=2^{15}\cdot10^{40}\cdot10^5\)
Vì 25<105 nên 19920<200315
\(d;3^{39}< 3^{40}=9^{20}< 11^{20}< 11^{21}\)
a) \(4^x=2^{x+1}\)
\(2^{2x}=2^{x+1}\)
\(\Rightarrow2x=x+1\)
\(\Rightarrow2x-x=1\)
\(\Rightarrow x=1\)
b) \(16=\left(x-1\right)^4\)
\(2^4=\left(x-1\right)^4\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x=3\)
c) \(x^{10}=1^x\)
\(x^{10}=1\)
\(x^{10}=1^{10}\)
\(\Rightarrow x=1\)
d) \(x^{10}=x\)
\(x^{10}-x=0\)
\(x\left(x^9-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{15}{2}\\x=\left\{8;7\right\}\end{cases}}\)
\(A,4^X=2^{X+1}\)
\(\left(2^2\right)^X=2^{X+1}\)
\(\Rightarrow2^{2X}=2^{X+1}\)
\(\Rightarrow2X=X+1\)
\(\Rightarrow2X-X=1\Leftrightarrow X=1\)
\(B,16=\left(x-1\right)^4\)
\(\Rightarrow x-1=\hept{\begin{cases}2\\-2\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}3\\-1\end{cases}}\)
1)\(79-5\left(11-x\right)=34\)
\(\Rightarrow79-55+5x=34\)
\(\Rightarrow24+5x=34\)
\(\Rightarrow5x=-10\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
2)\(32+2\left(7-x\right)=40\)
\(\Rightarrow32+14-2x=40\)
\(\Rightarrow46-2x=40\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
3)\(\left(166-2x\right).8^9=2.8^{11}\)
\(\Rightarrow\left(83-x\right).2.8^9=2.8^{11}\)
\(\Rightarrow83-x=8^3\)
\(\Rightarrow83-x=512\)
\(\Rightarrow x=-429\)
Vậy \(x=-429\)
4)\(5^2.x-2^3.x=51\)
\(\Rightarrow x\left(5^2-2^3\right)=51\)
\(\Rightarrow x\left(25-8\right)=51\)
\(\Rightarrow17x=51\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
5)\(3^x+4.3^x=5.3^7\)
\(\Rightarrow3^x\left(1+4\right)=5.3^7\)
\(\Rightarrow5.3^x=5.3^7\)
\(\Rightarrow3^x=3^7\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
6)\(7.2^x-2^x=6.32\)
\(\Rightarrow2^x\left(7-1\right)=6.2^5\)
\(\Rightarrow6.2^x=6.2^5\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
7)\(15^{3-x}=225\)
\(\Rightarrow15^{3-x}=15^2\)
\(\Rightarrow3-x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
8)\(4.5^x-3=97\)
\(\Rightarrow4.5^x=100\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
9)\(171-3.2^x=123\)
\(\Rightarrow3.2^x=48\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
10)\(180-4.x^5=32\)
\(\Rightarrow4.x^5=148\)
\(\Rightarrow x^5=37\)//Đề có lỗi không ???
Bài 1:
a,(2x-15):13+51=64
=> (2x-15):13=64-51
=> (2x-15):13=13
=>(2x-15)=1
=> 2x =16
=> x = 8
Vậy: x= 8