Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Đổi chỗ các trung tỉ cho nhau ta được: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)\(\left(đpcm\right)\)
b)\(\Leftrightarrow\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
Trừ cả 2 vế cho 2 . Đến đây thì dễ rồi.
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{a}{c}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+3d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\) ( Vì cùng bằng \(\frac{a}{c}\))
Ta có
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)
\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)
\(\Rightarrow-30ad+30bc=0\)
\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)
\(\)
Ta có
5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)
⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0
⇒−30ad+30bc=0⇒−30ad+30bc=0
⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc
hay ab=cdab=cd ( ĐPCM)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk
a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)
Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)
Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)
b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)
Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)
Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)
Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)
<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db
<=> -15ad + 15bc = -15cb + 15da
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
a/b=c/d=>a/c=b/d
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
theo t/c dãy tỉ số=nhau:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
2) trừ 1 vào mỗi tỉ số
\(\Rightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1-\frac{x-3}{2002}-1=\frac{x-4}{2001}-1\)
\(\Rightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}-\frac{x-3-2002}{2002}=\frac{x-4-2001}{2001}\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}=\frac{x-2005}{2001}\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
\(\Rightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
mà \(\frac{1}{2004}<\frac{1}{2003}<\frac{1}{2002}<\frac{1}{2001}\Rightarrow\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)
=>x-2005=0
=>x=2005
vậy x=2005
nhớ ****