Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2002}{2003}.\frac{2003}{2004}\)
Ta có : \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2.3.4.....2002.2003}{2.3.4.5....2003.2004}\)
\(=\frac{1}{2004}\)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2003}{2\cdot3\cdot4\cdot...\cdot2004}\)
\(=\frac{1}{2004}\)
\(\frac{1}{2}\times\frac{1}{3}\times\frac{1}{4}=\frac{1\times1\times1}{2\times3\times4}=\frac{1}{24}\)
\(\frac{1}{2}\times\frac{1}{3}\div\frac{1}{4}=\frac{1}{2}\times\frac{1}{3}\times\frac{4}{1}=\frac{1\times1\times4}{2\times3\times1}=\frac{4}{6}=\frac{2}{3}\)
\(\frac{1}{2}\div\frac{1}{3}\times\frac{1}{4}=\frac{1}{2}\times\frac{3}{1}\times\frac{1}{4}=\frac{1\times3\times1}{2\times1\times4}=\frac{3}{8}\)
b, 3/5 + 4/7 + 2/8 + 10/25 + 9/21 + 28/16
= 3/5 + 4/7 + 2/8 + 2/5 + 3/7 + 14/8
= (3/5 + 2/5) + ( 4/7 + 3/7) + ( 2/8 + 14/8)
= 1 + 1 + 7/4
= 2 + 7/4 = 15/4
c , 8/7 + 7/6 + 5/8 + 10/12 + 24/28 + 6/16
= c , 8/7 + 7/6 + 5/8 + 5/6 + 6/7 + 1/2
= (8/7 + 6/7) + (7/6 + 5/6) + 5/8 + 1/2
= 14/7 + 12/6 + 5/8 + 1/2
= 2 + 2 + 5/8 + 1/2
= 4 + 9/8 = 41/8
A) 1/3 + 1/6 + 1/18 = 6/18 + 3/18 = 9/18+ 1/8= 10/8
B) 1/20 + 1/4 + 2/5 = 4/80 + 20/80 = 24/80 + 2/5 = 120/400+160/400 = 280/400
C) 1/12 + 1/6 + 3/4 = 6/72 + 12/72 = 18/72
D) 1/4 + 2/25 + 3/100 = 33/100 + 3/100= 36/100
K nha
a) \(D=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{512}+\frac{1}{1024}\)
=> \(2D=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...++\frac{1}{256}+\frac{1}{512}\)
=> \(2D-D=\left(1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
=> \(D=1-\frac{1}{1024}\)
b) \(Đ=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
a) D=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots+\frac{1}{512}+\frac{1}{1024}.\)
\(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\dots+\frac{1}{512}-\frac{1}{1024}\)
\(D=1-\frac{1}{1024}\)
\(D=\frac{1023}{1024}\)
\(Đ=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\dots+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(Đ=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(Đ=1-\frac{1}{20}\)
\(Đ=\frac{19}{20}\)
Phần c như kiểu sai đề chỗ cuối hay sao ấy.
1.
\(\frac{5}{3}-\frac{1}{4}+\frac{1}{3}-\frac{3}{4}\)
\(=\left(\frac{5}{3}+\frac{1}{3}\right)-\left(\frac{1}{4}+\frac{3}{4}\right)\)
\(=2-1=1\)
\(\frac{2}{7}\cdot\frac{1}{5}+\frac{2}{7}\cdot\frac{4}{5}=\frac{2}{7}\cdot\left(\frac{1}{5}+\frac{4}{5}\right)=\frac{2}{7}\cdot1=\frac{2}{7}\)
#Louis
\(1.a)\frac{5}{3}-\frac{1}{4}+\frac{1}{3}-\frac{3}{4}\)
\(=\left(\frac{5}{3}+\frac{1}{3}\right)-\left(\frac{1}{4}+\frac{3}{4}\right)\)
\(=2-1\)
\(=1\)
\(b)\frac{2}{7}\times\frac{1}{5}+\frac{2}{7}\times\frac{4}{5}\)
\(=\frac{2}{7}\times\left(\frac{1}{5}+\frac{4}{5}\right)\)
\(=\frac{2}{7}\times1\)
\(=\frac{2}{7}\)
\(2.a)\frac{5}{6}+\frac{7}{12}-\frac{2}{9}\)
\(=\frac{30}{36}+\frac{21}{36}-\frac{8}{36}\)
\(=\frac{43}{36}\)
\(b)\frac{4}{9}\times\frac{5}{8}+\frac{1}{6}\)
\(=\frac{5}{18}+\frac{1}{6}=\frac{5}{18}+\frac{3}{18}\)
\(=\frac{8}{18}=\frac{4}{9}\)
\(c)2:\frac{3}{11}-\frac{13}{12}\)
\(=2\times\frac{11}{3}-\frac{13}{12}\)
\(=\frac{22}{3}-\frac{13}{12}\)
\(=\frac{25}{4}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times...\times\left(1-\frac{1}{2003}\right)\times\left(1-\frac{1}{2004}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times...\times\left(\frac{2003}{2003}-\frac{1}{2003}\right)\times\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
\(=\frac{1\times2\times...\times2002\times2003}{2\times3\times...\times2003\times2004}=\frac{1}{2004}\)
hoà ơi **** cho trà my đi