Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K = 4/2 - 4/4 + 4/4 - 4/6 + ....... + 4/2008 - 4/2010
K = 4/2 - 4/2010
K = 4016/2010 = 1/1003/1005
Ta có :
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(=\frac{12}{4.16}+\frac{20}{16.36}+...+\frac{388}{9216.9604}+\frac{396}{9604.10000}\)
\(=\frac{1}{4}-\frac{1}{16}+\frac{1}{16}-\frac{1}{36}+...+\frac{1}{9604}-\frac{1}{10000}\)
\(=\frac{1}{4}-\frac{1}{10000}< \frac{1}{4}\)
\(\Leftrightarrow B< \frac{1}{4}\)
B=\(\frac{12}{4.16}\)+\(\frac{20}{16.36}\)+...+\(\frac{396}{9604.10000}\)
Ta có:\(\frac{12}{4.16}\)=\(\frac{1}{4}\)-\(\frac{1}{16}\)
\(\frac{20}{16.36}\)=\(\frac{1}{16}\)-\(\frac{1}{36}\)
...
Khi đó:B=\(\frac{1}{4}\)-\(\frac{1}{16}\)+\(\frac{1}{16}\)-\(\frac{1}{36}\)+...+\(\frac{1}{9604}\)-\(\frac{1}{10000}\)=\(\frac{1}{4}\)-\(\frac{1}{10000}\)<\(\frac{1}{4}\)
Vậy: B<\(\frac{1}{4}\)
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=2.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\)
=2.(\(\frac{1}{2}-\frac{1}{2010}\)) = 2.(\(\frac{1005}{2010}-\frac{1}{2010}\))
=2.\(\frac{502}{1005}\)
=\(\frac{1004}{1005}\)
\(=2\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1005}{2010}-\frac{1}{2010}\right)\)
\(=2\cdot\frac{1004}{2010}\)
\(=\frac{1004}{1005}\)
\(k\)\(mk\)\(nha\)\(bn\)
=>2A=2(1/2x4+1/4.6+1/6.8+1/8.10+1/10.12+1/12.14)
=> 2A=2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12 + 2/12.14
=> 2a =1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
=> 2A =1-1/7
=>2A=16/17
=> A= 8/17
Mình chắc chắn . Chúc bạn học tốt
\(A=\frac{1}{2.4}\)\(+\frac{1}{4.6}\)\(+\frac{1}{6.8}\)\(+\frac{1}{8.10}\)\(+\frac{1}{10.12}\)\(+\frac{1}{12.14}\)
\(\Rightarrow2A=2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)
\(\Rightarrow2A=\frac{6}{14}\)
\(\Rightarrow A=\frac{3}{14}\)
Đặt A= \(\frac{4}{2.4}\)+\(\frac{4}{4.6}\)+\(\frac{4}{6.8}\)+...+\(\frac{4}{2008.2010}\)
A= 2(\(\frac{2}{2.4}\)+\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...+\(\frac{2}{2008.2010}\))
A=2(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\))
A=2(\(\frac{1}{2}-\frac{1}{2010}\))
A=2.\(\frac{502}{1005}\)
A=\(\frac{1004}{1005}\)
Mình ko ghi lai đề nha
4/2.4/4+4/4.4/6+......+4/2008.4/2010=4/2.4/2010=4/1005
Mình ko bt đúng ko nữa nha
a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)
\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)
b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)
\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)
\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)
c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)
\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)
\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)
Bài 2 Bạn tự làm nhé
1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{67}{4}\)
b,Các phép tính khác làm tương tự
Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ
c,tương tự
2.
a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{7}{12}\div x=\frac{-77}{20}\)
Đến đây dễ bạn tự làm
b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)
\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)
\(\frac{14}{5}x+50=-34\)
\(\frac{14}{5}x=-84\)
Tự làm tiếp
c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)
\(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2010}\right)\) \(;C=\frac{1}{2}.\frac{502}{1005}=\frac{251}{1005}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{1004.1005}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}\right)\)
=\(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
=\(2\left(1-\frac{1}{1005}\right)\)
=\(2.\frac{1004}{1005}\)
=\(\frac{2008}{1005}\)
P/s: Không biết đúng không nữa, làm đại ^.^
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Rightarrow A=4\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{2008.2010}\right)\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\right]\)
\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2010}\right)\right]\Rightarrow A=4\left(\frac{1}{2}.\frac{502}{1005}\right)\Rightarrow A=4.\frac{251}{1005}\Rightarrow A=\frac{1004}{1005}\)
\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
\(\Rightarrow B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)
\(\Rightarrow B=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)
\(\Rightarrow B=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\Rightarrow B=\frac{1}{3}.\frac{10}{33}\Rightarrow B=\frac{10}{99}\)
\(A=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(A=2\left[\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right]\)
\(A=2\left[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right]\)
\(A=2\left[1-\frac{1}{2010}\right]=2\cdot\frac{2009}{2010}=\frac{2009}{1005}\)
A:2=2/2*4 + 2/4*6 + 2/6*8 + + ... + 2/2008*2010
A:2=1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2008 - 1/2010
A:2=1/2 - 1/2010
A:2=.,,( Bạn tự tính nhé)
các bạn khác chọn (k) đúng cho mình nhé