Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M=\overline{abc} (a \ne b \ne c) \)
TH1: \(c=0 → c\) có 1 cách chọn.
\(a\) có 5 cách chọn.
\(b\) có 4 cách chọn.
\(\Rightarrow\) Có: \(1.5.4=20\) cách.
TH2: \(c \ne 0→ c\) có \(2\) cách chọn.
\(a\) có \(4\) cách chọn.
\(b\) có \(4\) cách chọn.
\(Rightarrow\) Có : \(2.4.4=32\) cách.
\(Rightarrow\) Có tất cả : \(20+32=52\) cách.
Vậy có thể lập được 52 số thỏa mãn yêu cầu.
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$. Xét các TH sau:
TH1: $c=0$
$a$ có 7 cách chọn, từ $1,2,4,5,7,8,9$
$b$ có 6 cách chọn
$\Rightarrow$ có $7.6=42$ cách chọn số
TH2: $c\neq 0$
$c$ có 3 cách chọn $(2,4,8)$
$a$ có $6$ cách chọn (bỏ số 0)
$b$ có $6$ cách chọn
$\Rightarrow$ có $3.6.6=108$ cách chọn số
Từ 2 TH trên suy ra có $108+42=150$ cách chọn số.
Số tự nhiên thỏa mãn có dạng với a,b,c,d ∈ A và đôi một khác nhau.
TH1: d=0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có 5.4.3 = 60 số.
TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4
Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2.4.4.3=96 số
Vậy có tất cả: 96 + 60 = 156 số.
Chọn C.
Đáp án D.
Gọi số cần tìm có dạng ,
Chọn f: có 3 cách
Chọn b,c,d,e :có cách
Vậy có số
Gọi số tự nhiên gồm 4 chữ số là: abcd
Trường hợp 1: d=0 (1 cách)
a : 6 cách ( #0); b: 5 cách; c:4 cách => 120 cách
TH2: d#0 ( nhận 2 4 6 => 1 cách)
a: 5 cách (#0; #d); b : 4 cách; c: 3 cách => 60 cách
=> TH1 + TH2 = 200 cách
ý lộn TH2: b: 5 cách(#a; #d); c: 4 cách => 100 cách
=> Tổng cộng 220 cách
Đáp án : A
+) ; c có 4 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) ; c có 3 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) a = 7; ; b khác 9, b có 6 cách chọn.
+) a = 7; c = 8; b có 6 cách chọn
Vậy có 3.4.7 + 3.3.7 + 3.6 + 6 = 171 số.
gọi STN cần tìm =\(\over abc\)là số chẵn => c thuộc 2;4
chọn chữ số c có 2 cách
chọn chữ số a có 4 cách
chọn chữ số b có 3 cách
Theo qui tắc nhân có 24 cách
=> có 24 số tự nhiên chẵn có 3 chữ số khác nhau từ A