Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/15+1/21+1/28+...+1/190
=2/30+2/42+2/56+...+2/380
=2/5.6+2/6.7+2/7.8+...+2/19.20
=2.(1/5.6+1/6.7+1/7.8+...+1/19.20)
=2.(1/5-1/6+1/6-1/7+1/7-1/8 +...+1/19-1/20)
=2.(1/5-1/20)
=2.3/20
=6/20=3/10
\(B=2.\left(\frac{1}{30}+\frac{1}{42}+...+\frac{1}{380}\right)\)
\(B=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{19.20}\right)\)
\(B=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(B=2.\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(B=2.\frac{3}{20}\)
\(B=\frac{3}{10}\)
Đáp án này là chính xác nhất đó, mình thề. k cho mình nhé
\(C=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
\(C=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{380}\)
\(C=2\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\right)\)
\(C=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(C=2\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(C=2\cdot\frac{3}{20}=\frac{3}{10}\)
- 2.s= 1/30+1/42+1/56+...+ 1/380
2.S= 1/ 5.6 =1/ 6.7 +1/ 7.8 +...+1/ 19.20
2.S= 1/5-1/20
2S= 3/20
Đề sai nha
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
Tự làm tiếp nha!
\(A=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
\(A=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{380}\) ( nhân cả tử và mẫu với 2 )
\(A=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{19.20}=2\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\right)\)
A = \(2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\right)=2\left(\frac{1}{5}-\frac{1}{20}\right)=2.\frac{3}{20}=\frac{3}{10}\)
B = \(\frac{12}{84}+\frac{12}{210}+\frac{12}{390}+...+\frac{12}{2100}\)
\(B=\frac{4}{28}+\frac{4}{70}+\frac{4}{130}+...+\frac{4}{700}\) ( chia cả tử và mẫu của mỗi phân số cho 3 )
B = \(\frac{4}{4.7}+\frac{4}{7.10}+\frac{4}{10.13}+...+\frac{4}{25.28}=\frac{4}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
B = \(\frac{4}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)=\frac{4}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{4}{3}.\frac{6}{28}=\frac{2}{3}\)
B=2.(130+142+...+1380)B=2.(130+142+...+1380)
B=2.(15.6+16.7+...+119.20)B=2.(15.6+16.7+...+119.20)
B=2.(15−16+16−17+...+119−120)B=2.(15−16+16−17+...+119−120)
B=2.(15−120)B=2.(15−120)
B=2.320B=2.320
B=310
\(B=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
\(B=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{380}\)
\(B=2\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\right)\)
\(B=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(B=2\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(B=2\cdot\frac{3}{20}=\frac{3}{10}\)