K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Hoành độ giao điểm thỏa mãn pt 

\(\left(k-\frac{2}{3}\right)x+1=\left(2-k\right)x-3\)

\(\Leftrightarrow kx-\frac{2}{3}x+1=2x-xk-3\Leftrightarrow2xk-\frac{8}{3}x+4=0\)

Thay x = 4 vào pt trên ta được : 

\(8k-\frac{32}{3}+4=0\Leftrightarrow k=\frac{5}{6}\)

23 tháng 4 2017

y = (k+1)x +3 (d)

và y = (3-2k)x + 1 (d’)

Các hàm số đã cho là hàm số bậc nhất khi:

bai 36

a) Vì đã có 3 ≠ 1 nên (d) // (d’) khi và chỉ khi

k+1 = 3 – 2k

k = 2/3 (TMĐK (*))

Vậy với k = 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) song song với nhau.

b) Hai đường thẳng (d) cắt (d’) khi và chỉ khi k+1 ≠ 3 – 2k

k 2/3

Vậy với k ≠ -1, k ≠3/2 và k ≠ 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) cắt nhau.

c) Hai đường thẳng (d) và (d’) không thể trùng nhau vì có tung độ gốc khác nhau (do 3 ≠ 1).

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

2:

a: Thay x=0 và \(y=\sqrt{2}\) vào y=2x+b, ta được:

\(b+2\cdot0=\sqrt{2}\)

=>\(b=\sqrt{2}\)

b: Thay x=-2 và y=-2 vào y=-4x+b,ta được:

b-4(-2)=-2

=>b+8=-2

=>b=-10

c: Vì (d)//y=-căn 3*x nên a=-căn 3

=>\(y=-\sqrt{3}\cdot x+b\)

Thay x=1 và \(y=3-\sqrt{3}\) vào (d),ta được:

\(b-\sqrt{3}=3-\sqrt{3}\)

=>b=3

NV
29 tháng 8 2020

\(P\left(k\right)+P\left(1-k\right)=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{2\left(1-k\right)+1}}{2^{2\left(1-k\right)}-2}=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{3-2k}}{2^{2-2k}-2}\)

\(=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^2}{2-2^{2k}}=\frac{2^{2k+1}}{2^{2k}-2}-\frac{4}{2^{2k}-2}=\frac{2\left(2^{2k}-2\right)}{2^{2k}-2}=2\) (đpcm)

Áp dụng cho câu b:

\(A=2009+P\left(\frac{1}{2009}\right)+P\left(\frac{2008}{2009}\right)+P\left(\frac{2}{2009}\right)+P\left(\frac{2007}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(\frac{1005}{2009}\right)\)

\(=2009+P\left(\frac{1}{2009}\right)+P\left(1-\frac{1}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(1-\frac{1004}{2009}\right)\)

\(=2009+2+2+...+2\) (có 1004 số 2)

\(=2009+2.1004=4017\)