Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\Leftrightarrow1-2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-cos\left(\frac{\pi}{2}-x\right)+sinx\frac{x}{2}sinx-cosx\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-sinx+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-cos\frac{x}{2}sinx\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2cos^2\frac{x}{2}sin\frac{x}{2}\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2sin\frac{x}{2}\left(1-sin^2\frac{x}{2}\right)\right)=0\)
\(\Leftrightarrow sinx\left(2sin^3\frac{x}{2}-sin\frac{x}{2}-1\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1\right)\left(2sin^2\frac{x}{2}+2sin\frac{x}{2}+1\right)=0\)
\(\Leftrightarrow...\)
1.
\(\Leftrightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)=5\)
Do \(\left\{{}\begin{matrix}sin2x\le1\\-4sin\left(x+\frac{\pi}{4}\right)\le4\end{matrix}\right.\) với mọi x
\(\Rightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin2x=1\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{3\pi}{4}+k2\pi\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)
\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)
Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):
\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)
\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)
3.
\(4sinx.cosx-2sinx+1-2cosx=0\)
\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
4.
\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)
Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
5.
\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
6.
\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)
\(\Leftrightarrow14sin^2x-5sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)
\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)
Nhiều quá @@ Tách ra đi ><
d.
\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
e.
\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.a.
ĐKXĐ: ...
\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ne k\pi\)
\(1-sin2x=2sin^2x\)
\(\Leftrightarrow1-2sin^2x-sin2x=0\)
\(\Leftrightarrow cos2x-sin2x=0\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow...\)
1.
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)+sinx.cosx-1=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=1\\sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\frac{1}{2}sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin2x=2\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=cos2x\)
\(\Leftrightarrow cos2x=cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\frac{\pi}{3}+k2\pi\\2x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow\sqrt{3}cosx-3sinx=2sin5x-2sinx\)
\(\Leftrightarrow\sqrt{3}cosx-sinx=2sin5x\)
\(\Leftrightarrow-\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=sin5x\)
\(\Leftrightarrow sin5x=-sin\left(x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{3}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{3}-x+k2\pi\\5x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Chắc bạn ghi nhầm đề, đây đâu phải là ptlg mà giải bạn :)
Hay là giải \(y'=0\) gì đó thì còn có lý