Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\left(2\right)\Leftrightarrow x^2+\left(1-x\right)^2-13=0\)
\(\Rightarrow x^2+1-2x+x^2-13=0\)
\(\Rightarrow2x^2-2x-12=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Delta=1^2-4.1.\left(-6\right)=1+24=25>0\)
\(\Delta>0\) thì pt có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\dfrac{1-5}{2}=-2\\x_2=\dfrac{1+5}{2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_1=3\\y_2=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\rightarrow\left(3;-2\right);\left(-2;3\right)\)
\(\left\{{}\begin{matrix}x+y=1\\x^2+y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\1-2xy=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\\left(1-y\right)y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\left(1\right)\\y-y^2+6=0\left(2\right)\end{matrix}\right.\)
Giải phương trình (2) ta được y = 3 và y = -2.
Thay vào (1) ta được lần lượt x = -2 và x = 3
Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc
mk làm ví dụ một câu ha
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)
Thay (1) vào bt (2) ta có -3(1-2y)-y=2
Bạn giải ra y rồi giải ra x là xong
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)