Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(D=\log_6\left(21,6\right)=\frac{\log_2\left(21,6\right)}{\log_26}=\frac{\log_2\frac{2^2.3^3}{5}}{\log_2\left(2.3\right)}=\frac{2+3\log_23-\log_25}{1+\log_23}=\frac{2+3a-b}{1+a}\)
Lời giải:
ĐK: \(x\in (0;+\infty)\)
\(x^{\log_29}=x^2.3^{\log_2x}-x^{\log_23}\)
\(\Leftrightarrow x^{2\log_23}=x^2.x^{\log_23}-x^{\log_23}=x^{\log_23+2}-x^{\log_23}\)
\(\Leftrightarrow x^{\log_23}(x^{\log_23}-x^2+1)=0\). Do $x\neq 0$ nên:
\(x^2-x^{\log_23}=1(*)\)
Nếu \(0< x\leq 1\Rightarrow x^2\leq 1; x^{\log_23}>0\Rightarrow x^2-x^{\log_23}< 1\) (vô lý). Do đó \(x\in (1;+\infty)\)
Đặt \(f(x)=x^2-x^{\log_23}\Rightarrow f'(x)=2x-\log_23x^{\log_23-1}\)
\(=x^{\log_23-1}(2x^{2-\log_23}-\log_23)>x^{\log_23-1}(2.1-\log_23)>0\)với mọi $x\in (1;+\infty)$ nên $f(x)$ đồng biến với mọi $x\in (1;+infty)$. Mà ở vế phải thì $1$ là hàm hằng. Do đó $(*)$ chỉ có nghiệm duy nhất.
Dễ thấy $x=2$ là nghiệm duy nhất của pt
18.
\(F\left(x\right)=\int\limits xe^{x^2}dx\)
Đặt \(t=x^2\Rightarrow xdx=\frac{1}{2}dt\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+C=\frac{1}{2}e^{x^2}+C\)
Ủa bạn có ghi nhầm đáp án A ko? Thế nào thì cả A và D đều ko phải nguyên hàm
19.
\(F\left(x\right)=\int sin^4xcosxdx=\int sin^4x.d\left(sinx\right)=\frac{1}{5}sin^5x+C\)
20.
Đặt \(4x=t\Rightarrow dx=\frac{1}{4}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=8\end{matrix}\right.\)
\(\int\limits^2_0f\left(4x\right)dx=\int\limits^8_0\frac{1}{4}f\left(t\right)dt=\frac{1}{4}\int\limits^8_0f\left(x\right)dx=\frac{1}{4}.24=6\)
15.
\(t=cosx\Rightarrow sinx.dx=-dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1e^t\left(-dt\right)=\int\limits^1_0e^tdt\)
Nếu cần kết quả tích phân thì \(I=e-1\)
16.
\(t=x^2\Rightarrow x.dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^4_04^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^4_04^tdt\)
17.
\(t=x^2+2x\Rightarrow\left(x+1\right)dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_0e^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^3_0e^tdt\)
a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)
b) \(\log_23<\log_24=2=\log_39<\log_311\)
c) Đưa về cùng 1 lôgarit cơ số 10, ta có
\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)
\(lg19-lg2=lg\frac{19}{2}\)
So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :
\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)
Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)
Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)
d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)
Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\)
Ta có :
\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)
\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)
\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)
Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)
Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)
và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)
Ta có : \(A=\log_{20}0,04=\log_{20}\frac{2}{5^3}=\frac{\log_2\frac{2}{5^3}}{\log_2\left(2^2.5\right)}=\frac{1-3\log_25}{2+\log_25}=\frac{1-3a}{2+a}\)
a. Áp dụng bất đẳng thức Cauchy ta được
\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\) (1)
((1) không có dấu bằng vì \(\log_23\ne\log_32\))
Ta có :
\(\log_23+\log_32< \frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_32}-\frac{5}{2}< 0\)
\(\Leftrightarrow2\log^2_23-5\log_23+2< 0\)
\(\Leftrightarrow\left(2\log_23-1\right)\left(\log_23-2\right)< 0\) (*)
Mặt khác : \(\begin{cases}2\log_23-1>0\\\log_23-3< 0\end{cases}\) \(\Rightarrow\) (*) đúng
\(\Rightarrow\log_23+\log_32< \frac{5}{2}\) (2)
Từ (1) và (2) \(\Rightarrow2< \log_23+\log_32< \frac{5}{2}\) => Điều phải chứng minh
b. Ta có \(\log_{\frac{1}{2}}3+\log_3\frac{1}{2}=-\left(\log_23+\log_32\right)\) (1)
Chứng minh như câu a ta được :
\(\log_23+\log_32>2\Rightarrow-\left(\log_23+\log_32\right)< -2\) (2)
Từ (1) và (2) \(\Rightarrow\log_{\frac{1}{2}}3+\log_3\frac{1}{2}< -2\) => Điều phải chứng minh
a. \(\log_23\) và \(\log_311\)
Ta có : \(\log_23< \log_24=4=\log_39< \log_311\Rightarrow\log_23< \log_211\)
b.\(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Ta có : \(\begin{cases}\frac{-\sqrt{5}}{2}< 0\\0< \frac{5}{7}< 1\end{cases}\)\(\Rightarrow\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}>\left(\frac{5}{7}\right)^0=1\)
Ta có \(a=\log_{25}7=\frac{\log_27}{\log_225}=\frac{\log_27}{2\log_25}=\frac{\log_27}{2b}\Rightarrow\log_27=2ab\)
\(\Rightarrow H=\log_{\sqrt[3]{5}}\frac{49}{8}=\frac{\log_2\frac{49}{8}}{\log_2\sqrt[3]{5}}=\frac{\log_2\frac{7^2}{2^2}}{\log_25^{\frac{1}{3}}}=\frac{2\log_27-3}{\frac{1}{3}\log_25}=\frac{12ab-9}{b}\)
a. \(\sqrt[4]{\sqrt{3}-1}\) và \(\sqrt[3]{\sqrt{3}-1}\)
Ta có : \(\begin{cases}\sqrt[4]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{4}};\sqrt[3]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{3}}\\0< \sqrt{3}-1< 1;\frac{1}{4}< \frac{1}{3}\end{cases}\)
\(\Rightarrow\sqrt[4]{\sqrt{3}-1}>\left(\sqrt{3}-1\right)^{\frac{1}{4}}\)
b. \(\log_32\) và \(\log_23\)
Ta có : \(\log_32< \log_33=1=\log_22< \log_23\Rightarrow\log_32< \log_23\)