K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2022

\(a,x\sqrt{x}+\sqrt{x}-x-1\\ =\sqrt{x}\left(x+1\right)-\left(x+1\right)\\ =\left(\sqrt{x}-1\right)\left(x+1\right)\\ b,\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\\ =\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\\ =\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)\)

`a, x sqrt x + sqrt x - x - 1`

`= sqrt x(x+1) - (x+1)`

`= sqrt(x-1)(x+1)`

`b, sqrt a(sqrt b + 2) + 3(sqrt b + 2)`

`= (sqrt a + 3)(sqrt b+2)`

Bài 3:

a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)

\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)

b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)

\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)

c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

16 tháng 7 2019

\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)

\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)

\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)

\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)

\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)

\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)

\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)

\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)

\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

\(\text{f)}x-2\sqrt{x-1}-a^2\)

\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

20 tháng 6 2017

a, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\)

\(=\dfrac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{7}}\)

b, \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)

\(=\dfrac{2.\sqrt{5}.\sqrt{3}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{3}+\sqrt{2}.\sqrt{3}}{2.\sqrt{5}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}+\sqrt{2}.\sqrt{3}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}.\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}.\left(1-\sqrt{2}\right)-\sqrt{3}.\left(1-\sqrt{2}\right)}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right).\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

c, \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}.\sqrt{x}+\sqrt{x}.\sqrt{y}}{\sqrt{y}.\sqrt{y}+\sqrt{x}.\sqrt{y}}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)

Chúc bạn học tốt!!!

20 tháng 6 2017

d) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\) = \(-\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{1-ab}\)

= \(-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(1+\sqrt{ab}\right)}{\left(1+\sqrt{ab}\right)\left(1-\sqrt{ab}\right)}\) = \(-\dfrac{\sqrt{a}-\sqrt{b}}{1-\sqrt{ab}}\) = \(\dfrac{\sqrt{b}-\sqrt{a}}{1-\sqrt{ab}}\)

Bài 1:

b) Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\frac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}-\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}\)

\(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}-\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\frac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Bài 2:

a) Ta có: \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)\)

\(=a-\sqrt{a}-a-\sqrt{a}\)

\(=-2\sqrt{a}\)

b) Ta có: \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\sqrt{ab}-\sqrt{ab}=0\)

d) Ta có: \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)\)

=0

Bài 3:

a) ĐKXĐ: x≥0

Ta có: \(\frac{\sqrt{27x}}{\sqrt{3}}=6\)

\(\Leftrightarrow\frac{\sqrt{27}\cdot\sqrt{x}}{\sqrt{3}}=6\)

\(\Leftrightarrow3\cdot\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{3}=2\)

hay \(x=4\)(thỏa mãn)

Vậy: S={4}

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-1\end{matrix}\right.\Leftrightarrow x\ge0\)

Ta có: \(\sqrt{x+1}=3-\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(3-\sqrt{x}\right)^2\)

\(\Leftrightarrow x+1=9-6\sqrt{x}+x\)

\(\Leftrightarrow x+1-9+6\sqrt{x}-x=0\)

\(\Leftrightarrow-8+6\sqrt{x}=0\)

\(\Leftrightarrow6\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=\frac{8}{6}=\frac{4}{3}\)

hay \(x=\frac{16}{9}\)(thỏa mãn)

Vậy: \(S=\left\{\frac{16}{9}\right\}\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

1.

Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)

\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)

\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)

\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)

\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)

2.

\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)

\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)

\(=(a-1)^2\)

3.

\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

4. Bạn xem lại đề xem đã đúng chưa?

5.

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)