Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)
\(=\sqrt{x-3}+3-x\)
c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)
=>2 căn x-2=18
=>x-2=81
=>x=83
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)
\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)
Do đó:
\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}\)
\(=\sqrt{2}.\sqrt{2^2-2}=\sqrt{2}.\sqrt{2}=2\)
\(y=\frac{3.2\sqrt{2}-2.2\sqrt{3}+2\sqrt{5}}{3.3\sqrt{2}-2.3\sqrt{3}+3\sqrt{5}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\frac{2(3\sqrt{2}-2\sqrt{3}+\sqrt{5})}{3(3\sqrt{2}-2\sqrt{3}+\sqrt{5})}=\frac{2}{3}\)
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
a) \(\sqrt{2x^2-\sqrt{2}x+\frac{1}{4}}=\sqrt{2}x\)
⇔ \(2x^2-\sqrt{2}x+\frac{1}{4}=2x^2\)
⇔ \(-\sqrt{2}x+\frac{1}{4}=0\)
⇔ \(\sqrt{2}x=\frac{1}{4}\)
⇔ \(x=\frac{\sqrt{2}}{8}\)
b) \(\sqrt{4x+8}+\frac{1}{3}\sqrt{9x+18}=3\sqrt{\frac{x+2}{4}}+\sqrt{2}\)
⇔ \(2\sqrt{x+2}+\frac{1}{3}\cdot3\sqrt{x+2}=\frac{3\sqrt{x+2}}{2}+\sqrt{2}\)
⇔ \(3\sqrt{x+2}-\frac{3\sqrt{x+2}}{2}=\sqrt{2}\)
⇔ \(\frac{3\sqrt{x+2}}{2}=\sqrt{2}\)
⇔ \(\frac{3}{2}=\frac{\sqrt{2}}{\sqrt{x-2}}\)
⇔ \(\sqrt{\frac{9}{4}}=\sqrt{\frac{2}{x+2}}\)
⇔ \(\frac{2}{x+2}=\frac{9}{4}\)
⇔ \(x+2=\frac{8}{9}\)
⇔ \(x=\frac{8}{9}-2=-\frac{10}{9}\)
Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.
d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Điều kiện \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)
Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.
a) \(\sqrt{4x+8}-\sqrt{9x+18}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow\sqrt{4\left(x+2\right)}-\sqrt{9\left(x+2\right)}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow2\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow0\sqrt{x+2}=\sqrt{x+5}\Leftrightarrow0=\sqrt{x+5}\)
\(\Leftrightarrow0=x+5\Leftrightarrow-5=x\)
Vậy phương trình đã cho có nghiệm duy nhất là x = -5
b) ĐKXĐ: \(x\ge0;x\ne1\)
\(T=\left(\dfrac{1}{1+2\sqrt{x}}-\dfrac{1}{\sqrt{3}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)
\(=\left(\dfrac{\sqrt{3}+2-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}\right):\left(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\right)\)
\(=\dfrac{1-2\sqrt{x}+\sqrt{3}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)
a) Bổ sung: ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x+2}XĐ\Leftrightarrow x+2\ge0\\\sqrt{x+5}XĐ\Leftrightarrow x+5\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ge-5\end{matrix}\right.\Rightarrow}x\ge-2}\) Sau khi tìm được x = -5 ta thấy k thỏa mãn Đk: \(x\ge-2\)
Vậy pt đã cho là vô nghiệm
x√18 - √18 = x√8 + 4√2
3x√2 - 3√2 = 2x√2 + 4√2
3x√2 - 2x√2 = 4√2 + 3√2
x√2 = 7√2
x = 7
\(x\sqrt{18}-\sqrt{18}=x\sqrt{8}+4\sqrt{2}\\\Leftrightarrow x\sqrt{18}-\sqrt{18}=2\sqrt{2}x+4\sqrt{2}\\ \Leftrightarrow\sqrt{18}\left(x-1\right)=2\sqrt{2}\left(x+2\right)\\ \Leftrightarrow3\sqrt{2}\left(x-1\right)=2\sqrt{2}\left(x+2\right)\\ \Leftrightarrow3x-3=2x+4\\ \Leftrightarrow x=7\)
Vậy x = 7