Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hàm số y = sin(1/x) với x > 0.
Giải bất phương trình sau trên khoảng (0; + ∞ ):
Do đó, hàm số đồng biến trên các khoảng
Và nghịch biến trên các khoảng
với k = 0, 1, 2 …
y = x – sinx, x ∈ [0; 2 π ].
y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2 π ]
Dấu “=” xảy ra chỉ tại x = 0 và x = 2 π .
Vậy hàm số đồng biến trên đoạn [0; 2 π ].
kiểu bài này có đáp án trên mạng rồi ấy ạ, anh/chị/ bạn nào mà xem qua đáp án trên mạng có thể giải thích kĩ hơn giúp em chỗ cos 1/x >0 về đoạn sau được không ạ, chứ ai đọc mãi mà không hiểu được 😭😭
Bất phương trình lượng giác:
\(cos\left(X\right)\ge a\Leftrightarrow-arccos\left(a\right)+k2\pi\le X\le arccos\left(a\right)+k2\pi\)
Vậy BPT: \(cos\left(\dfrac{1}{x}\right)>0\)
\(\Leftrightarrow-\dfrac{\pi}{2}+k2\pi\le\dfrac{1}{x}\le\dfrac{\pi}{2}+k2\pi\) với \(k\ge1\)
Nghịch đảo: \(\dfrac{2}{k4\pi-\pi}\le x\le\dfrac{2}{k4\pi+\pi}\)
*Xét hàm số: y= -x3 + 2x2 – x – 7
Tập xác định: D = R
\(y'\left(x\right)=-3x^2+4x-1\); \(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )
Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).
Tập xác định: D = R{1}
\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)
Vậy hàm số nghịch biến trong từng khoảng (-∞,1) và (1, +∞)
a) y = x – sinx, x ∈ [0; 2π].
y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2π]
Dấu “=” xảy ra chỉ tại x = 0 và x = 2π.
Vậy hàm số đồng biến trên đoạn [0; 2π].
c) Xét hàm số y = sin(1/x) với x > 0.
Giải bất phương trình sau trên khoảng (0; + ∞ ):
Do đó, hàm số đồng biến trên các khoảng
Và nghịch biến trên các khoảng
với k = 0, 1, 2 …