K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2020

Đề chắc đúng chứ bạn? Việc có thêm tham số c khiến bài toán rất khó giải quyết

10 tháng 3 2020

à sory ạ đấy là a

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

11 tháng 7 2017

nhận thấy x=0 không là nghiệm,chia cả 2 vế của PT cho x2

\(PT\Leftrightarrow x^2+ax+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)

đặt \(x+\dfrac{1}{x}=k\Leftrightarrow x^2+\dfrac{1}{x^2}=k^2-2\)

\(PT\Leftrightarrow k^2-2+ak+b=0\)(*)

\(\Leftrightarrow k^2-2=-\left(ak+b\right)\Leftrightarrow\left(k^2-2\right)^2=\left(ak+b\right)^2\)

Áp dụng BĐT bunyakovsky:

\(\left(k^2-2\right)^2=\left(ak+b\right)^2\le\left(a^2+b^2\right)\left(k^2+1\right)\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}\)

Đến đây nếu use phương pháp miền giá trị thì sẽ ra \(a^2+b^2\ge0\).Tuy nhiên lại không tìm được x, có nghĩa là PT vô nghiệm, trái đề bài

để ý ràng \(k=x+\dfrac{1}{x}\ge2\)

\(a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}=k^2+1+\dfrac{9}{k^2+1}-6\)( chọn điểm rơi k=2)

\(=\left(\dfrac{25}{k^2+1}+k^2+1\right)-\dfrac{16}{k^2+1}-6\)

Áp dụng BĐT AM-GM và \(k\ge2\) ta có:

\(a^2+b^2\ge2.5-\dfrac{16}{5}-6=\dfrac{4}{5}\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{k}=\dfrac{b}{1}\\k=2\\x=1\end{matrix}\right.\)\(\Leftrightarrow a=2b\)

Thế vào PT đầu tìm ra a,b với x=1

P/s: thực ra x phải là \(\pm1\) nhưng a>0 nên chỉ xét x>0

2 tháng 8 2019

Giả sử không có BĐT thức nào có nghiệm. Khi đó:

\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)

\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)

\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)

Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)

\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí

Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm

4 tháng 9 2021

bloody hell còn 2 tiếng nữa thôi pls send help

4 tháng 9 2021

ban  nham  roi   vi   khong  phai  nhu  the  dau  nen  ban  sai  roi. 

4 tháng 9 2021

help me