K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

\(x^3-3x^2+3x-1=\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)^3=\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)^3-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2-x-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-x-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x=0\\x=3\end{cases}}\)Bạn đổi dấu ngoặc nhọn thành ngoặc vuông giúp mình nhé

26 tháng 7 2021

a)(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1-3x2)=54

\(\Rightarrow\)x3+9x2+27x+27-x(9x2+6x+1)+(2x+1)(x2-2x+1)=54

\(\Rightarrow\)x3+9x2+27x+27-9x3-6x2-x+2x3-4x2+2x+x2-2x+1=54

\(\Rightarrow\)-6x3+26x+28=54

\(\Rightarrow\)-6x3+26x=54-28

\(\Rightarrow\)-6x3+26x=26

\(\Rightarrow\)-6x3+26x-26=0

\(\Rightarrow\)-2(3x3+13x+14)

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

a) Ta có: \(\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)=\left(4-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)-\left(x-4\right)\right]-2\left(3x-2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3-x+4\right)-6x+4=0\)

\(\Leftrightarrow x-4-6x+4=0\)

\(\Leftrightarrow-5x=0\)

mà -5<0

nên x=0

Vậy: x=0

21 tháng 10 2020

cau a : (3x^2y-6xy+9x)(-4/3xy)

           =-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x

           =-4x+8-8y

cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)

            =(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3

             =(1/3)^3 + (2y)^3x-2

cau c :  (x-2)(x^2-5x+1)+x(x^2+11)

            =x^3-5x^2+x-2x^2+10x-2+x^3+11x

            =2x^3-7x^2+22x-2

cau d := x^3 + 6xy^2 -27y^3

cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y

cau f := x^2-2x+2x -4-2x-1

          = x(x-2)-5

21 tháng 10 2020

cau e la + 15y ko phai =15y

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

=>4x-27=1

hay x=7

b: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x+1\right)^2+3x^2=15\)

\(\Leftrightarrow-9x^2+27x+6x^2+12x+6+3x^2=15\)

=>39x+6=15

hay x=3/13

c: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

hay x=14

17 tháng 4 2019

Ý c là thực hiện phép tính nha mọi người

NV
20 tháng 4 2019

a/ \(\left(2n^3-5n^2+1\right):\left(2n-1\right)=n^2-2n-1\)

b/ \(x\ne0;\pm2\)

\(\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x-2}{x^2-4}\right):\left(\frac{6}{x+2}\right)\)

\(=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\left(\frac{x+2}{6}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)}{6}=-\frac{1}{x-2}=\frac{1}{2-x}\)

c/

\(\left(3x-1\right)^2+2\left(3x-1\right)\left(3x+4\right)+\left(3x+4\right)^2\)

\(=\left(3x-1+3x+4\right)^2\)

\(=\left(6x+3\right)^2\)

2 tháng 7 2019

A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề