K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

x2-6y=1<=>x2=1+6y 

Vì 6y+1 là số lẻ nên =>x có dạng 2k+1=>x2=(2k+1)2

Ta có (2k+1)^2=1+6y

<=>4k2+4k+1=1+6y

<=>4(k^2+k)=6y

<=>2(k^2+k)=3y

<=>y là số chẵn .mà y là số nguyên tố => y =2 

Thay y=2 vào rồi tìm x .....

16 tháng 5 2020

Bg

Ta có \(x^2-6y^2=1\)(\(x,y\inℤ\); x,y là các số nguyên tố)

=> 6y2 + 1 = x2 

=> x2 - 1 = 6y2

Xét 6y2 + 1 = x2 

Vì 6y2 luôn chẵn nên 6y2 + 1 lẻ

Suy ra x2 lẻ --> x lẻ

Xét x2 - 1 = 6y2:

=> x2 - 12 = 6y2  *x2 - 12 = x2 + x - x - 1 = (x2 + x) - (x + 1) = x(x + 1) - 1(x + 1) = (x - 1)(x + 1)

=> (x - 1)(x + 1) = 6y2 

Vì x lẻ nên x - 1 chẵn và x + 1 chẵn --> x - 1 và x + 1 là hai số chẵn liên tiếp

Mà 2 số chẵn liên tiếp luôn chia hết cho 8.

=> 6y2 \(⋮\)8

Vì 6 không chia hết cho 8 và ƯCLN (6; 8) = 2

Nên y \(\in\)B (2) --> y chẵn hay y \(⋮\)2

Mà y là số nguyên tố nên y = 2

Thay vào:

x2 - 6.22 = 1

x2 - 24   = 1

x2          = 1 + 24

x2          = 25

x2          = 52

x            = 5 (thỏa mãn)

Vậy x = 5 và y = 2 

19 tháng 3 2020

TA CÓ \(x^2-12y^2=1\)

\(\Leftrightarrow x^2=12y^2\)

\(\Leftrightarrow x=12y\)

\(\Leftrightarrow\frac{y}{1}=\frac{x}{12}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{y}{1}=\frac{x}{12}=\frac{y-x}{1-12}=\frac{1}{-11}=-\frac{1}{11}\)

tuwfddos tìm được x,y

       

         

           

19 tháng 3 2020

cảm ơn nhé

19 tháng 3 2020

z đâu bn

19 tháng 3 2020

mình ghi thừa đó

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

3 tháng 3 2016

câu 1 : là 0

cau2: -13

3 tháng 3 2016

bài 1 ko có số tự nhiên nào thỏa mãn 

bài 2: y=-13

22 tháng 2 2016

Ta có: x2 - 2x + 1 = 6y2 - 2x + 2.

=> x2 - 1 = 6y2 => 6y2 = (x - 1) . (x + 1) chia hết cho 2, do 6y2 chai hết cho 2.

Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 => (x - 1) và (x + 1) cùng chẵn hoặc cùng lẻ.

Vậy (x - 1) và (x + 1) cùng chẵn => (x - 1) và (x + 1) là hai số chẵn liên tiếp.

(x - 1) . (x + 1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2

Từ đó suy ra y = 2 (Vì y là số nguyên tố), tìm được x = 5.