K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2019

\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

8 tháng 2 2020

PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\)\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)

Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)

Đến đây giải nốt nha

9 tháng 2 2020

Phạm Minh Quang giải giúp mình đi bạn , mình ko hiểu

24 tháng 8 2019

Thế \(\hept{\begin{cases}x_1^2=2mx_1+3m\\x_2^2=2mx_2+3m\end{cases}}\) vô cái dưới là xong nha

15 tháng 11 2018

a/ Ta có : △' = (-2)2-(m+3)

=4-m-3 = 1-m

De ptr co 2 nghiem x1 va x2 thì △' ≥0

=>1-m≥0 =>m≤1

Theo Viei{ x1+x2=4 ; x1x2=m+3

Ta co: |x1-x2|=2 ⇔(x1-x2)2=4

⇔(x1+x2)2-4x1x2=4

⇔42-4(m+3)=4

⇔m=0 (TM)

b/ Ta co: △ = (m-1)2-4(m+6)

=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0

=> m2-6m-23≥0 (*)

Theo viet { x1+x2=1-m ; x1x2=m+6

db <=> ( x1+x2)2-2x1x2=10

⇔ (1-m)2-2(m+6)=10

⇔ m2-4m -21 =0

⇔[m=7 ; m=-3

Thay vao (*) =>m=7 (loai) ; m=-3 (tm)

c/ Ta co :△' = (-m)2-(3m-2)

= m2-3m+2

De ptr co 2 nghiem x1 , x2 thi : △' ≥0

⇔m2-3m+2≥0 (*)

Theo viet { x1+x2=2m ; x1x2=3m-2

db <=> ( x1+x2)2-3x1x2=4

⇔ (2m)2-3(3m-2)=4

⇔ 4m2--9m+2 =0

⇔[m=2 ; m=\(\dfrac{1}{4}\)

Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)

d/ Ta co : △=(-3)2-4(m-2)

=17-4m

De ptr co 2 nghiem x1 , x2 thi : △ ≥0

⇔17-4m≥0

⇔m≤\(\dfrac{17}{4}\)

theo viet{ x1+x2=3 ; x1x2= m-2

⇔(x1+x2)3-3x1x2(x1+x2) =9

⇔33-3.3(m-2)=9

⇔m=4(tm)

30 tháng 4 2019

câu 1) ta có x2-2(m+2)x +2m2+7=0

ĐK để pt trên có nghiệm: Δ' ≥ 0

⇔ (m + 2)2 -2m2 -7 ≥ 0 ⇔ \(1\le m\le3\)

pt trên có 1 nghiệm x = 5 nên thế x = 5 vào pt ta có:

m2 -5m +6 =0 ⇔ \(\left[{}\begin{matrix}m=2\left(n\right)\\m=3\left(n\right)\end{matrix}\right.\)

với m = 2 thế vào pt ta có: x2 -8x +15 =0 ⇔ \(\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

với m = 3 thế vào pt ta có: x2 -10x + 25 =0 ⇔ pt nghiệm kép x = 5

câu 2) đề hơi sai tí nhé bạn, mình làm theo yêu cầu luôn!

x2 -2(m+1)x+m-a=0

ĐK để pt có nghiệm: Δ' ≥ 0

⇔ (m+1)2 - m +a ≥ 0 ⇔ m2 + m +1+ a ≥ 0

Gọi x1; x2 lần lượt là 2 nghiệm của pt trên, theo hệ thức Vi-et ta có

x1 + x2 = 2m+2 và x1x2 = m - a

A = x1 + x2 -2x1x2 = 2m+2 - 2.(m - a) = 2+2a

1 tháng 5 2019

mik nhìn lộn đề .

NV
4 tháng 5 2020

\(\Delta'=\left(m+2\right)^2-3m-10=m^2+m-6\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\le-3\\m\ge2\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+2\right)\\x_1x_2=3m+10\end{matrix}\right.\)

\(\left|x_1-x_2\right|\le4\)

\(\Leftrightarrow\left(x_1-x_2\right)^2\le16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-16\le0\)

\(\Leftrightarrow4\left(m+2\right)^2-4\left(3m+10\right)-16\le0\)

\(\Leftrightarrow m^2+m-10\le0\) \(\Rightarrow\frac{-1-\sqrt{41}}{2}\le m\le\frac{-1+\sqrt{41}}{2}\)

Vậy \(\left[{}\begin{matrix}\frac{-1-\sqrt{41}}{2}\le m\le-3\\2\le m\le\frac{-1+\sqrt{41}}{2}\end{matrix}\right.\)