Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biểu thức chứa căn có nghiêm khi biểu thức trong căn được xác định và nó lớn hơn hoặc bằng 0
a) x\(\ge\)\(\frac{3}{4}\)
b) \(x\le\frac{3}{4}\)
c) mẫu khác 0 biểu thức trong căn xác định. khi đó đk của mẫu x\(\ne\)-1 và x\(\ne\)1 (1)
xét : \(\frac{1}{1-x^2}\ge0\)
<=> \(1\ge x^2\)
<=> \(-1\le x\le1\) (2)
từ (1) và (2) => biểu thức có nghiệm khi -1<x<1
d) nhận thấy 1+x2 luôn lớn hơn hoặc bằng 1 với mọi x ( hay mẫu khác 0)
=> biểu thức luôn có nghiệm với mọi x ( vô số nghiệm)
\(\sqrt{x-1}+x^2-1=0\)DK: \(x\ge1\)\(\Leftrightarrow\sqrt{x-1}\left[1+\left(x+1\right)\sqrt{x-1}\right]=0\Leftrightarrow\)
*\(\sqrt{x-1}=0=>x=1\)
*\(1+\left(x+1\right)\sqrt{x-1}=0\Leftrightarrow vonghiem\)
KL: x=1
b)
\(\sqrt{x^2+3}=!x^2+1!\) đặt x^2+1=t=> t>=1
\(\sqrt{t+2}=t\Leftrightarrow t^2-t-2=0=>t=-1\left(hoacloai\right)\&t=2\)
=>\(x=+-1\)
c)
\(x^3+4=4x\sqrt{x}\) dk x>=0
\(x^3+4=4\sqrt{x^3}\) \(Dat..\sqrt{x^3}=t=>t\ge0\)
t^2+4=4t<=>t^2-4t+4=0=> t=2=> x=\(\sqrt[3]{4}\)
nếu bạn muốn minh trả lời tiếp hay gui link truc tiep den minh.
xem bài và kiểm tra lại số liệu rất có thể sai lỗi số học.
sao không thấy ai giải/
thấy có loi roi vào copy pass linh tinh
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
\(1)\) Ta có :
\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(M=\left|x+1\right|+\left|x-1\right|\)
\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại )
Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)
Chúc bạn học tốt ~
b,ta co x^2+y^2=1
=>x^2=1-y^2
y^2=1-x^2
ta co
\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)
=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)
còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra
\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
\(ĐK:\hept{\begin{cases}x^2-4x+1\ge0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2+\sqrt{3}\\0\le x\le2-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+1}=3\sqrt{x}-\left(x+1\right)\)
Bình phương 2 vế ta có :
\(\hept{\begin{cases}3\sqrt{x}-\left(x+1\right)\ge0\\x^2-4x+1=9x-6\sqrt{x}\left(x+1\right)+x^2+2x+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\sqrt{x}-\left(x+1\right)\ge0\\6\sqrt{x}\left(x+1\right)=15x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\sqrt{x}-\left(x+1\right)\ge0\\3\sqrt{x}\left(2x+2-5\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow3\sqrt{x}-\left(x+1\right)\ge0\)và \(\orbr{\begin{cases}\sqrt{x}=0\left(lọai\right)\\2x-5\sqrt{x}+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-5\sqrt{x}+2=0\\3\sqrt{x}-\left(x+1\right)\ge0\end{cases}}\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{cases}}\)và \(3\sqrt{x}-\left(x+1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)