Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
a) Ta có: \(\left(x-1\right)^2\ge\)0 \(\forall\)x
\(\left|y+2\right|\ge0\)\(\forall\) y
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y
=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy ...
b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)
=> \(\frac{3-2y}{6}=\frac{2}{x}\)
=> \(x\left(3-2y\right)=12\)
=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}
Do 3 - 2y là số lẽ , mà x,y \(\in\)Z
=> 3 - 2y \(\in\) {1; -1; 3; -3}
Lập bảng :
3 - 2y | 1 | -1 | 3 | -3 |
x | 12 | -12 | 4 | -4 |
y | 1 | 2 | 0 | 3 |
Vậy ...
a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)
\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)
\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)
\(\frac{5}{6}=\frac{1}{2}x\)
\(x=\frac{5}{6}:\frac{1}{2}\)
\(x=\frac{5}{3}\)
b) |3x-4|+|3y+5|=0
ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)
Mà |3x-4|+|3y+5|=0 nên :
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy x=4/3 ; y=-5/3
c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vậy ...
Ta có : |3x - 4| + |3y + 5| = 0
Mà : \(\left|3x-4\right|\le0\forall x\in R\)
\(\left|3y+5\right|\ge0\forall x\in R\)
Nên |3x - 4| = |3y + 5| = 0
Suy ra : 3x - 4 = 0 ; 3y + 5 = 0
=> 3x = 4 ; 3y = -5
=> x = 4/3 ; y = -5/3
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-\frac{1}{2}=0\\\frac{1}{2}y+\frac{3}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{-6}{5}\end{cases}}\)
b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{5}{y}y-\frac{1}{2}\right|< 0\)
Vì trị tuyệt đối của một giá trị luôn lớn hơn hoặc bằng 0
Mà đề cho tổng trên nhỏ hơn 0
=> Không thể làm :v
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Do vế trái không âm
\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\-\frac{3}{4}+\frac{1}{5}+z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=\frac{9}{20}\end{cases}}\)
Ta có: \(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|y+\frac{1}{5}\right|\ge0\end{cases}}\Rightarrow\left|x-3\right|+\left|y+\frac{1}{5}\right|\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+\frac{1}{5}\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-\frac{1}{5}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=3\\y=-\frac{1}{5}\end{cases}}\)
giúp mk với nha, ai đúng mk k cho