Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Pt hoành độ giao điểm: \(m-x=\frac{x-1}{x+1}\)
\(\Leftrightarrow\left(m-x\right)\left(x+1\right)=x-1\)
\(\Leftrightarrow x^2-\left(m-2\right)x-m-1=0\left(1\right)\)
Đường thẳng cắt đồ thị khi và chỉ khi (1) có nghiệm
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+4\left(m+1\right)\ge0\)
\(\Leftrightarrow m^2+8\ge0\) (luôn đúng với mọi m)
Đáp án C đúng
b.
\(y'=3x^2-6mx\)
Hàm số có 2 cực trị \(\Leftrightarrow m\ne0\)
Tiến hành chia y cho y' là lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng: \(y=-2m^2x+3m^3\Leftrightarrow2m^2x+y-3m^3=0\)
Đường thẳng đã cho song song d khi và chỉ khi:
\(\left\{{}\begin{matrix}2m^2=2\\-3m^3\ne3\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Đáp án A đúng
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa
19.
\(\overline{z}=1-3i\)
\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)
Phần ảo bằng -7
20.
Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)
Biểu diễn trên mặt phẳng phức: \(z=2+i\)
21.
Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?
\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)
\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)
15.
Diện tích thiết diện:
\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)
Thể tích:
\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)
16.
\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)
17.
\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)
18.
\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)
\(\Rightarrow\) phần thực bằng 5
Đáp án A