Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)
Câu 2: đáp án D
\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)
Câu 3: đáp án D
\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)
Câu 4:
\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)
Câu 5:
\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C
Câu 6:
Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề
Câu 7:
\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)
\(\Leftrightarrow x-3y+1< 0\)
Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng
Câu 8:
Thay tọa độ vào chỉ đáp án D thỏa mãn
Câu 9:
Đáp án C đúng
Câu 10:
Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)
1) b)
Phương trình trên tương đương
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)
ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)
\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(-2=x^3+4x^2-2x^2-8x-33x-132\)
\(x^3+2x^2-41x-130=0\)
\(x^3+5x^2-3x^2-15x-26x-130=0\)
\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)
\(\left(x^2-3x-26\right)\left(x+5\right)=0\)
\(\Rightarrow x=-5\)(Loại)
\(x^2-3x-26=0\)
Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác
\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)
\(x_1=\dfrac{3-\sqrt{113}}{2}\)
\(x_2=\dfrac{3+\sqrt{113}}{2}\)
Phương trình có 2 nghiệm trên
5) 0<a<b, ta có: a<b
<=> a.a<a.b
<=>a2<a.b
<=>\(a< \sqrt{ab}\)(1)
- BĐT Cauchy:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)
\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)
Dấu = xảy ra khi a=b=0 mà 0<a<b
=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)
- 0<a<b, ta có: a<b<=> a+b<b+b
\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)
Từ (1), (2), (3), ta có đpcm
Ta có : x + y = 1 x - y = 2 a - 1 ⇔ x + y = 1 2 x = 2 a ⇔ y = 1 - a x = a
Do đó :
x y = a . 1 - a = a - a 2 = - a 2 - 2 . 1 2 a + 1 4 + 1 4 = - a - 1 2 2 + 1 4
Do - a - 1 2 2 ≤ 0 ∀ a ⇒ - a - 1 2 2 + 1 4 ≤ 1 4
Suy ra,giá trị lớn nhất của xy là 1 4 khi a = 1 2 .
Đáp án là B.