K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Sau khi vẽ ta được hình như sau:

Khi đó, các đoạn thẳng  A B = B C = C D = D E = E F = F G = G B (vì cùng bằng bán kính).

10 tháng 1 2019

Sau khi vẽ ta được hình bs.17

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Khi đó, các đoạn thẳng: AB, BC, CD, EF, FG, GB bằng nhau (vì cùng bằng bán kính).

Vẽ hình liên tiếp theo các cách diễn đạt sau : a) Vẽ đoạn thẳng AB = 2cm. Vẽ đường tròn (\(C_1\)) tâm A, bán kính AB b) Vẽ đường tròn \(\left(C_2\right)\) tâm B, bán kính AB. Gọi các giao điểm của đường tròn này với đường tròn \(\left(C_1\right)\) là C và G c) Vẽ đường tròn \(\left(C_3\right)\) tâm C, bán kính AC. Gọi các giao điểm  mới của đường tròn này với đường...
Đọc tiếp

Vẽ hình liên tiếp theo các cách diễn đạt sau :

a) Vẽ đoạn thẳng AB = 2cm. Vẽ đường tròn (\(C_1\)) tâm A, bán kính AB

b) Vẽ đường tròn \(\left(C_2\right)\) tâm B, bán kính AB. Gọi các giao điểm của đường tròn này với đường tròn \(\left(C_1\right)\) là C và G

c) Vẽ đường tròn \(\left(C_3\right)\) tâm C, bán kính AC. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là D

d) Vẽ đường tròn \(\left(C_4\right)\) tâm D, bán kính AD. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là E

e) Vẽ đường tròn \(\left(C_5\right)\) tâm E, bán kính AE. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là F

f) Vẽ đường tròn \(\left(C_6\right)\) tâm F, bán kính AF. 

g) Vẽ đường tròn \(\left(C_7\right)\) tâm G, bán kính AG

Sau khi vẽ như trên, hãy so sánh các đoạn thẳng AB, BC, CD, DE, EF, FG, GB

1
24 tháng 3 2018

A B C D I

IA=IB=1.5 cm

16 tháng 5 2017

a,

b,

c,

10 tháng 2 2021

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 Bai 38 Trang 93 Sach Bai Tap Toan 6 Tap 2

Ta có : IA = IB = 3/2 = 1,5 cm

27 tháng 5 2018

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Ta có : IA = IB = 3/2 = 1,5 cm

13 tháng 8 2016

 Nhận thấy tứ giác MFNE có góc M và N vuông --> góc MFN+góc MEN= 2 vuông (*) 
Lại có các tam giác AFB và MEN đồng dạng (vì có góc NME=gocFAB và góc MNE =góc FBA), suy ra góc AFB=góc MEN --> góc MFN=góc MEN (**), từ (*); (**) suy ra góc MFN=góc MEN =1 vuông 
--> tứ giác MENF là hình chữ nhật, từ đó dễ dàng suy ra tiếp FE vuông góc với AB 
b) Gọi I ; K lần lượt là trung điểm của O1O2 và MN. Áp dụng Talét dễ dàng tính được IK=5 
--> KD^2=ID^2-IK^2 =9^2 -5^2 =56 --> CD=2.KD= 4√14

13 tháng 8 2016

Dài lắm,

3 tháng 4 2019

Xác định được AB = BC = CD = DE = EF = FA.

3 tháng 9 2019

Xác định được AB = BC = CD = DE = EF FA.

17 tháng 1 2019

a. b.

c. - Đường tròn (O’; 1cm) có đường kính là: EF; Các dây cung là: EA, EB, AB, FA, FB

Vì E thuộc (O’; 1cm) nên EO’=1cm; EF=2.EO’=2cm

- Đường tròn (O; 1,5cm) có đường kính là: DC; Các dây cung là: DA, DB, AB, AC, CB

Vì C thuộc (O; 1,5cm) nên CO=1,5cm; DC=2.CO=3cm

d. Vì đường tròn (O’; 1cm) cắt đoạn thẳng OO’ tại E, nên E nằm giữa 2 điểm O và O’.

Ta có: O E + E O ' = O O ' ⇒ O E = 1 c m  

Mà EO’=1cm, nên OE=EO’ (=1cm)

Do đó: E là trung điểm của đợn thẳng OO’.

e. Vì đường tròn (O; 1cm) cắt đường thẳng OO’ tại D, đường tròn (O’; 1cm) cắt đường thẳng OO’ tại F, nên 4 điểm D, O, O’, F lần lượt theo thứ tự đó và DO=1,5cm; O’F=1cm.

Ta có: D F = D O + O O ' + O ' F = 1 , 5 + 2 + 1 = 4 , 5 c m .

Vậy DF=4,5cm

20 tháng 5 2021

dai dong