Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xem hình 13G.
b) Sử dụng tam giác đồng dạng:
∆OA’B’ ~ ∆OAB
∆FB’O ~ ∆IB’B;
Ta tính được: h’ = 3,33cm; d’ = 8cm.
b)
b)
Tóm tắt:
OF = OF' = f = 12cm
OA = d = 18cm
AB = h = 10cm
A'B' = ?
OA' = ?
Giải:
\(\Delta ABF\sim\Delta OIF\)
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{10}{A'B'}=\dfrac{18-12}{12}\)
\(\Rightarrow A'B'=\dfrac{10.12}{18-12}=20cm\)
\(\Delta OAB\sim\Delta OA'B'\)
\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\Leftrightarrow\dfrac{18}{OA'}=\dfrac{10}{20}\Rightarrow OA'=\dfrac{18.20}{10}=36cm\)
a.
Vẽ tia tới BI song song với trục chính, tia ló ra đi qua tiêu điểm F'
Vẽ tia tới đi qua tiêu điểm F, tia ló ra song song với trục chính.
Giao của 2 tia ló ra là B'
Từ B' ta hạ vuông góc xuống trục chính thì được A'
b. Xét tam giác vuông ABF = tam giác vuông OIF' = tam giác vuông A'B'F'
Suy ra A'B' = AB = h
Khoảng cách d' = d.
Trên hình 42-43.5a, xét hai cặp tam giác đồng dạng:
ΔABO và ΔA’B’O; ΔA’B’F’ và ΔOIF’.
Từ hệ thức đồng dạng được:
Vì AB = OI (tứ giác BIOA là hình chữ nhật)
Chia cả hai vế của (1) cho tích d.d’.f ta được:
(đây được gọi là công thức thấu kính cho trường hợp ảnh thật)
Thay d = 2f, ta tính được: OA’ = d’ = 2f = d
Thay vào (*) ta được:
Vậy d’ = d; h’ = h.
a) Sử dụng hai trong ba tia đặc biệt để vẽ ảnh.
b) Dựa vào tam giác đồng dạng, suy ra h’ = h; d’ = d = 2f.