Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)
\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)
\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)
còn sao nx thì mk chịu =.=
a
= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}
Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.
Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .
a) \(\dfrac{-5}{9}.\dfrac{3}{11}+\dfrac{-13}{18}.\dfrac{3}{11}\)
\(=\dfrac{3}{11}.\left(\dfrac{-5}{9}+\dfrac{-13}{9}\right)\)
\(=\dfrac{3}{11}.\left(-2\right)\)
\(=\dfrac{-6}{11}\)
b) \(\dfrac{11}{2}.2\dfrac{1}{3}-1\dfrac{1}{5}.1\dfrac{1}{2}\)
\(=\dfrac{11}{3}.\dfrac{7}{3}-\dfrac{6}{5}.\dfrac{3}{2}\)
\(=\dfrac{77}{9}-\dfrac{9}{5}\)
\(=\dfrac{385}{45}-\dfrac{81}{45}\)
\(=\dfrac{304}{45}\)
c) \(1\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}-\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{10}{9}.\dfrac{2}{145}-\dfrac{8}{3}\)
\(=\dfrac{4}{261}-\dfrac{8}{3}\)
\(=\dfrac{4}{261}-\dfrac{696}{261}\)
\(=-\dfrac{692}{261}\)
d) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)
\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)
\(=0+0+0+4-1-1-1\)
\(=4-3\)
\(=1\)
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)
a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)
= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)
= 0 + \(\dfrac{11}{125}\)
= \(\dfrac{11}{125}\)
b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +
\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4
= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4
= -1
c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)
= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)
= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)
= \(\dfrac{-7}{75}\)
d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)
= 1 + (-1)
= 0
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}=\dfrac{3}{8}\)
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
\(\left|x+\dfrac{1}{3}\right|-\dfrac{4}{3}=-\dfrac{1}{2}\\ =>\left|x+\dfrac{1}{3}\right|=\dfrac{4}{3}-\dfrac{1}{2}=\dfrac{5}{6}\\ =>\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{5}{6}\\x+\dfrac{1}{3}=-\dfrac{5}{6}\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{6}\end{matrix}\right.\)