Vận tốc của một vật dao động điều hòa phụ thuộc vào thời gian theo đồ thị như hình vẽ. Mốc th...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

x=Acos(\(\omega t+\varphi\))

Tại thời điểm t=0, ta có:

\(\frac{A}{2}=Acos\left(\varphi\right)\) \(\Rightarrow\)\(\varphi=-\frac{\pi}{6}\)(do vật chuyển động theo chiều dương)

\(\Rightarrow\) \(x=Acos\left(\omega t-\frac{\pi}{6}\right)\)

 

11 tháng 4 2020

cái này mình tưởng phải bằng: x=Acos(\(\omega t+\frac{\pi}{3}\)) chứ.

23 tháng 8 2016
W = \frac{1}{2}m \omega ^2 A^2 = \frac{1}{2}m \omega ^2 x^2 + \frac{1}{2}mv^2
Khi qua VTCB x = 0 \Rightarrow W = \frac{1}{2}mv^2
Đáp án đúng: C
20 tháng 7 2016

\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\)\(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)

\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)

23 tháng 8 2016

Khi vật qua VTCB \Rightarrow 
v_{Max} = \omega A = 1 (cm/s)
a_{Max} = \omega^2 A = 1,57 \approx \frac{\pi}{2} (cm/s^2)
\frac{a_{Max}}{v_{Max}} = \frac{\omega ^2 A}{\omega A} = \omega = \frac{\pi}{2} (rad/s)
\Rightarrow T = \frac{2 \pi}{\omega } = 4 (s)

25 tháng 6 2016

Tks :)

5 tháng 6 2016

Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)

\(\Rightarrow A = 4cm\)

\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)

\(v>0\Rightarrow \varphi < 0\)

Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)

Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)

6 tháng 6 2016

\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow A=4cm.\)

 

 Hỏi đáp Vật lý\

Điểm M thỏa mãn có vận tốc dương và li độ 2 căn 3. Tại đó pha ban đầu là -30 độ.

=> \(x=4\cos\left(10\sqrt{2}t-\frac{\pi}{6}\right).\)

28 tháng 7 2016

Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\)  Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)

chọn B