K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
12 tháng 10 2019

Hình vẽ đây : 

YAX34P43.jpg (578×558) 

Bài làm để Cô Quản Lý giúp đỡ nhá bn :) 

Hc tốt 

13 tháng 10 2019

A B C D E F H G I

a) Gọi I là trung điểm AF

=> AI = IF = FD = 1/3 AD = 1/3 BC = BE  

Mà AI//BE ( vì AD //BC)

=> ABEI là hình bình hành.

=> EI //AB (1) 

Xét tam giác AFH có: IE//AG (  theo (1) )  và I là trung điểm AF

=> E là trung điểm FG => EG = EF

Dễ dàng chứng minh được \(\Delta FHD=\Delta EGB\)=> HF = GE 

=> GE = HF = EF

b ) DF = 1/3 DA  => AF= 2/3 DA

   BE = 1/3 BC => EC = 2/3 BC 

Vì ABCD là hình bình hành => DA = BC => AF = EC

Mà AF// EC ( vì AD //BC )

=> AF//=EC 

=> AECF là hình bình hành.

18 tháng 7 2017

đề bài sai

18 tháng 7 2017

Cho hình thang ABCD, AB//CD với AB>CD. CMR: nếu AD=AB+DC thì 2 tia phân giác của góc A và góc D cắt nhau tại trung điểm của BC.

Giải:

Gọi M,N lần lượt là trung điểm của AD và BC =>MN là đường trung bình của hình thang ABCD =>MN=(AB+CD)/2=AD/2=MA=MD; MN//AB, MN//DC

=>tam giác MND và tam giác MNA cân tại M => góc MND = góc MDN mà góc MND = góc CDN (so le trong)

=> ND là tia phân giác góc D

CM tương tự ta có NA là tia phân giác góc A

mà N trung điểm BC => ĐPCM