Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc
gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )
f có 3 cách chọn
a có 5 cách chọn lọc
b;c;d;e đều có 6 cách chọn
=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán
b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )
f=0,5 => f có 2 cách chọn
a có 5 cách chọn
b;c;d;e đều có 6 cách chọn
=> có 2*5*6*6*6*6 = 12960
Số cách xếp 8 chữ số còn lại vào 8 vị trí là 8! = 40320
...Vậy TH này có 40320 stn
- Có 5 cách chọn chữ số hàng trăm.
- Có 5 cách chọn chữ số hàng chục.
- Có 4 cách chọn chữ số hàng đơn vị.
Số số được tạo thành là:
\(5.5.4=100\) (số)
Tuy nhiên trong 100 số này đã bị mất đi 1 số số chẵn:
012 | 013 | 014 | 015 |
021 | 023 | 024 | 025 |
031 | 032 | 034 | 035 |
041 | 042 | 043 | 045 |
051 | 052 | 053 | 054 |
Vậy số số lẻ hơn số số chẵn là 8 số.
Có số số chẵn là:
\(\left(100-8\right):2=46\) (số)
Có số số lẻ là :
\(100-46=54\) (số)
Nếu coi 100 số là 100 %.
Xác xuất chọn được số chẵn ở lần chọn đầu là:
\(46:100.100=46\%\)
Xác xuất chọn được số chẵn ở lần chọn thứ 2 (nếu lần ko trúng) là:
\(46:99.100\approx46,5\)
a) ĐS: 4 số.
b) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục. Có 4 cách để thực hiện hành động này
Hành động 2: Chọn chữ số b ở hàng đơn vị. Có 4 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là
4 . 4 = 16 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 16 số tự nhiên có hai chữ số.
c) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} và a, b phải khác nhau, có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục.
Có 4 cách để thực hiện hành động này.
Hành động 2: Chọn chữ số b ở hàng đơn vị, với b khác chữ số a đã chọn.
Có 3 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra từ các cách để lập được số tự nhiên kể trên là:
4 . 3 = 12 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 12 số tự nhiên có hai chữ số khác nhau.