K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Chọn A

Với điểm M: xM/i = 2/1,2 = 1,67

Điểm M nằm qua vân tối thứ 2

Với điểm N:  xN/i = 4,5/1,2 = 3,75 

=> Điểm N nằm qua vân tối thứ 4.

Trong khoảng giữa hai điểm M và N trên màn ở cùng một phía so với vân sáng trung tâm có 2 vân sáng và 2 vân tối.

14 tháng 2 2016

Số vân sáng trong khoảng MN chính là số k thỏa mãn

        \(x_M < x_s < x_N\)

=>      \( 2 < k i < 4,5 \)

=>  \(1,67 < k < 3,75.\)

Do \(k \in Z \) => \( k = 2,3.\)

Tương tự.

Số vân tối trong khoảng MN chính là số k thỏa mãn

         \(x_M < x_t < x_N\)

=>   \( 2 < (k+\frac{1}{2})i < 4,5\)

=>   \( 1,167 < k < 3,25.\)

Do \(k \in Z \) => \(k = 2,3.\)

28 tháng 1 2018

Vẫn chưa hiểu tại đoạn: k∈Z => k=2,3. Ai giải thích cho mình với ạ.

3 tháng 6 2017

Đáp án A

Số vân sáng và vân tối quan sát được trên màn lần lượt là:

Có hai vân sáng và hai vân tối trong đoạn MN.

11 tháng 7 2017

4 tháng 6 2016

Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)

Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)

Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\) 

Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)

Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.

Vậy có 2 vân trùng,

Chọn đáp án B.

10 tháng 4 2019

Đáp án D

Khoảng cách giữa vân sáng liên tiếp trên màn là 4mm nên ta có: 

O
ongtho
Giáo viên
23 tháng 1 2016

Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)

                    \(\lambda_1=600n m= 0,6 \mu m.\)

Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)

<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)

Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)

                               <=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)

                               <=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)

Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)

                             <=> \(3,055 \leq k_1 \leq 12,22\) 

Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.

Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.

                          

                           

 

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4

26 tháng 1 2016

Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.

\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)

 

29 tháng 4 2016

Tóm tắt:

a = \(10^{-3}m\)

D = \(1,25m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=k_2\lambda_2\Rightarrow\)\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,48}{0,64}=\frac{3}{4}\)

Vậy: \(k_1=3;k_2=4\)\(\Rightarrow\Delta x=3i_1=3.\frac{\lambda_1.D}{a}=3.\)\(\frac{0,64.10^{-6}.1,25}{10^{-3}}=2,4.10^{-3}m=2,4mm\)

\(\rightarrow D\)