Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả các đáp án đều có sản phẩm là 1 hạt α và \(a\) hạt nhân X nên phương trình phản ứng hạt nhân là
\(_{92}^{238}U \rightarrow _{92}^{234}U+ _2^4He+ a_Z^AX\)
Áp dụng định luật bào toàn số khối và điện tích
\(238 = 234+ 4+ a.A=> a.A= 0=> A = 0 \)(do \(a>0\))
\(92 = 92+ 2 + a.Z=> a.Z = -2\). Chỉ có thể là a = 2 và z = -1.
Hạt nhân đó là \(_{-1}^0e\)
Cứ 1 hạt nhân \(_{92}^{238}U\) bị phân rã tạo ra 1 hạt nhân \(_{82}^{206}Pb\). Từ đó ta có nhận xét là số hạt nhân \(_{92}^{238}U\) bị phân rã chính bằng số hạt nhân \(_{82}^{206}Pb\) tạo thành.
Tỉ số giữa số hạt nhân \(_{92}^{238}U\) bị phân rã và số hạt nhân \(_{92}^{238}U\) còn lại là
\(\frac{\Delta N}{N}= \frac{6,239.10^{18}}{1,188.10^{20}}= 0,0525 = \frac{1-2^{-\frac{t}{T}}}{2^{-\frac{t}{T}}}\)
Nhân chéo => \(2^{-\frac{t}{T}}= 0,95.\)
=> \(t = -T\ln_2 0,95 = 3,3.10^8\)(năm)
=> Tuổi của khối đã là 3,3.108 năm.
Các hạt nhân bền vững có năng lượng liên kết riêng lớn nhất cỡ 8,8 MeV/nuclôn ; đó là những hạt nhân có số khối trong khoảng 50 < A < 95.
\(A \rightarrow B+ _2^4He\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{A} =\overrightarrow P_{B} + \overrightarrow P_{\alpha} \)
Mà ban đầu hạt A đứng yên => \(\overrightarrow P_{A} = \overrightarrow 0\)
=> \(\overrightarrow P_{B} + \overrightarrow P_{\alpha} = \overrightarrow 0 .\)
=> \(P_B = P_{\alpha}\)
Mà \(P_{\alpha}^2 = 2m_{\alpha}K_{\alpha};P_B^2 = 2m_BK_B \)
=> \(2m_{\alpha}K_{\alpha}=2m_BK_B \)
=> \(\frac{K_B}{K_{\alpha}}= \frac{m_{\alpha}}{m_B}.\)
Kí hiệu \(N_{01}\), \(N_{02}\) là số hạt ban đầu lần lượt của \(^{235}U\) và \(^{238}U\).
t = 0 Ban đầu t thời điểm cần xác định hiện nay t 1 2
Hiện nay \(t_2\): \(\frac{N_{1}}{N_{2}}=\frac{N_{01}2^{-\frac{t_2}{T_1}}}{N_{02}2^{-\frac{t_2}{T_2}}} =\frac{7}{1000}.(1)\)
Thời điểm \(t_1\):
\(\frac{N_1}{N_2}= \frac{N_{01}2^{-\frac{t_1}{T_1}}}{N_{02}2^{-\frac{t_1}{T_2}}} = \frac{3}{100}.(2)\)
Chia (1) cho (2) => \(\frac{2^{-\frac{t_2}{T_1}}.2^{-\frac{t_1}{T_2}}}{2^{-\frac{t_1}{T_1}}.2^{-\frac{t_2}{T_2}}}= \frac{7.100}{3.1000}= \frac{7}{30}.\)
Áp dụng \(\frac{1}{2^{-x}} =2^x. \)
=> \(2^{(t_2-t_1)(\frac{1}{T_2}-\frac{1}{T_1})} = \frac{7}{30}.\)
=> \(t_2-t_1 = \frac{T_1T_2}{T_1-T_2}\ln_2 (7/30)=1,74.10^{9}\).(năm) \(= 1,74 \)(tỉ năm).
Như vậy cách hiện nay 1,74 tỉ năm thì trong urani tự nhiên có tỉ lệ số hạt thỏa mãn như bài cho.
\(W_{lkr}= \frac{W_{lk}}{A}\)
Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.
Hạt nhân kém bền vững nhất là \(_2^4He\).
\(Ra \rightarrow Rn+\alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{Ra} =\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} \)=> \(\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} =\overrightarrow 0\) (do ban đầu Ra đứng yên)
=> \(P_{Rn}= P_{\alpha} \)
mà \(P ^2 = 2mK\)
=> \(2m_{Rn}K_{Rn}=2m_{\alpha} K_{\alpha} \)
=> \(221,970.K_{Rn}= 4,0015.K_{\alpha}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{Ra}+m_{Ra}c^2 = K_{Rn} + m_{Rn}c^2+ K_{\alpha}+m_{\alpha}c^2\)
=> \(m_{Ra}c^2-m_{Rn}c^2-m_{\alpha}c^2 = K_{Rn} + K_{\alpha}\), ( do \(K_{Ra}=0\))
=> \( K_{Rn} + K_{\alpha}=(m_{Ra}-m_{Rn}-m_{\alpha})c^2\)
\(=(225,977 - 221,970 - 4,0105) uc^2= 5,12325 MeV. (2)\)
Từ (1) và (2) ta có hệ 2 phương trình 2 ẩn \(K_{\alpha}; K_{Rn}\) .Bấm máy tính cầm tay
\(K_{\alpha} = 5,03 MeV; K_{Rn} = 0,09 MeV. \)
Đáp ánB