K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 5:

Vecto tịnh tiến là:

$\overrightarrow{AA'}=(x_{A'}-x_A, y_{A'}-y_A)=(2-3, 3-2)=(-1,1)$

$B'$ là ảnh của $B$ qua phép tịnh tiến theo vecto $overrightarrow{AA'}$ nên:

$\overrightarrow{BB'}=\overrightarrow{AA'}$

$\Leftrightarrow (x_{B'}-x_B, y_{B'}-y_B)=(-1,1)$

\(\Leftrightarrow \left\{\begin{matrix} x_{B'}=x_B-1=2-1=1\\ y_{B'}=y_B+1=5+1=6\end{matrix}\right.\)

Vậy tọa độ điểm $B'$ là $(1,6)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 4:

Đường tròn $(C)$ có tâm $I(1;2)$

Đường tròn $(C')$ có tâm $I'(0;3)$

$R=R'=2$

Vecto tịnh tiến biến đường tròn $(C)$ thành $(C')$ là:

$\overrightarrow{v}=\overrightarrow{II'}=(-1,1)$

NV
18 tháng 8 2020

\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{v}=\overrightarrow{NM}=\left(-5;1\right)\)

\(\Rightarrow2\overrightarrow{v}=\left(-10;2\right)\Rightarrow\left\{{}\begin{matrix}x_P=-4+-10=-14\\y_P=1+2=3\end{matrix}\right.\)

\(\Rightarrow P\left(-14;3\right)\)

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$

\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)

Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:

$3(x'-2)-2(y'+1)+1=0$

$\Leftrightarrow 3x'-2y'-7=0$

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.

Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$

Khi đó, $M'=T_{\overrightarrow{v}}(M)

\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)

PTĐTr $(C')$ có dạng:

$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$

$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$

NV
18 tháng 8 2020

Đường thẳng d nhận \(\left(1;2\right)\) là 1 vtcp

Phép tịnh trên theo \(\overrightarrow{v}\) biến d thành chính nó khi và chỉ khi \(\overrightarrow{v}\) cùng phương vecto chỉ phương của d

\(\Leftrightarrow\frac{a+1}{1}=\frac{3a-4}{2}\Leftrightarrow a=6\)

30 tháng 5 2017

a)
Qua phép đối xứng trục Oy điểm \(M\left(1;1\right)\) biến thành điểm \(M'\left(x;y\right)\) có tọa độ là: \(\left\{{}\begin{matrix}x'=-x=-1\\y'=y=1\end{matrix}\right.\).
Suy ra: \(M'\left(-1;1\right)\).
Qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\left(2;0\right)\) điểm M' biến thành điểm \(A\left(x_A;y_A\right)\) là:\(\left\{{}\begin{matrix}x_A=-1+2=1\\y_A=0+1=1\end{matrix}\right.\).
Suy ra: \(A\left(1;1\right)\equiv M\) là điểm cần tìm.
b) Gọi C là ảnh của điểm M qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\)
là: \(\left\{{}\begin{matrix}x_C=2+1=3\\y_C=0+1=1\end{matrix}\right.\). Suy ra: \(C\left(3;1\right)\)
\(M''=Đ_{Oy}\left(C\right)\) nên \(\left\{{}\begin{matrix}x_{M''}=-x_C=-3\\y_{M''}=y_C=1\end{matrix}\right.\). Suy ra: \(M''\left(-3;1\right)\).

31 tháng 3 2017

Dễ thấy A' = {D_{o}}^{}(A) = (1;-3)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = \(D_O\) (B) = (3;0) và C' = \(D_O\) (C) = (1;-1). suy ra phương trình của d' là: \(\dfrac{x-3}{1-3}=\dfrac{y}{-1}\) hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

31 tháng 3 2017

Dễ thấy A' = \({D_{o}}^{}(A) = (1;-3)\)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = DODO (B) = (3;0) và C' = DODO (C) = (1;-1). suy ra phương trình của d' là: x−31−3=y−1x−31−3=y−1 hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1) Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp...
Đọc tiếp

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1)

Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ

Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo véc tơ v(2;3) biến M thành điểm nào

Bài 4: Trong mặt phẳng tọa độ Oxy cho đường tròn (C): \((x-1)^{2}\)+\((y+2)^{2}\)=4 thực hiện liên tiếp phép đối xứng trục Oy và phép tịnh tiến theo véc tơ v(2;3) biến (C) thành đường tròn nào

Bài 5: Trong mặt phẳng tọa độ Oxy cho điểm I(1;1) và đường thẳng (d): x+y-4=0 thực hiện liên tiếp phép đối xứng qua tâm I và phép tịnh tiến theo véc tơ (3;2) biến d thành đường thẳng nào

0