K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Giả sử z = x + yi (x, y ∈ R), khi đó số phức z được biểu diễn bởi điểm M(x, y) trên mặt phẳng tọa độ Oxy.

a) Trên hình 71.a (SGK), điểm biểu diễn ở phần gạch chéo có hoành độ có hoành độ x ≥ 1, tung độ y tùy ý.

Vậy số phức có phần thực lớn hơn hoặc bằng -1 có điểm biểu diễn ở hình 71.a (SGK)

b) Trên hình 71.b(SGK), điểm biểu diễn có tung độ y ∈ [1, 2], hoành độ x tùy ý.

Vậy số phức có phần ảo thuộc đoạn [-1, 2]

c) Trên hình 71.c (SGK), hình biểu diễn z có hoành độ x ∈ [-1, 1] và x2 + y2 ≤ 4 (vì |z| ≤ 4.

Vậy số phực có phần thực thuộc đoạn [-1, 1] và môdun không vượt quá 2.



28 tháng 4 2018

24 tháng 2 2017

\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)

\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)

\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)

Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)

15 tháng 6 2017

vui Dạ cảm ơn ạ

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)

8 tháng 3 2017

47. y=x ĐA: D

48. A(-4;0); B(0;4); C(x; 3)

\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)

A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D

49.A(2;-2); B(3;1); C(0;2)

\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)

=>Tam giác vuông cân=> ĐA:C

51. ĐA:D

52: A(-1;3); B(-3;-2); C(4;1)

\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)

ĐA: C

8 tháng 3 2017

điền bừa đi

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Câu 1:

\(w=(z-2+3i)(\overline{z}+1-2i)\) \(\in \mathbb{R}\)

\(\Leftrightarrow |z|^2+z(1-2i)+(3i-2)\overline{z}+4+7i\in\mathbb{R}\)

Đặt \(z=a+bi\Rightarrow (a+bi)(1-2i)+(3i-2)(a-bi)+7i\in\mathbb{R}\)

\(\Leftrightarrow -2a+b+3a+2b+7=0\) (phần ảo bằng 0)

\(\Leftrightarrow a+3b+7=0\)

Khi đó \(|z|=\sqrt{a^2+b^2}=\sqrt{b^2+(3b+7)^2}=\sqrt{10(b+2,1)^2+4,9}\) min khi \(b=-2,1\) kéo theo \(a=-0,7\)

Đáp án A.

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Câu 2:

Từ \(|iz+1|=2\Rightarrow |z-i|=2|-i|=2\)

Nếu đặt \(z=a+bi\) ta dễ thấy tập hợp các điểm biểu diễn số phức $z$ là điểm $M$ nằm trên đường tròn tâm \(I(0,1)\) bán kính bằng $2$

Số phức

Hiển nhiên \(|z-2|\) là độ dài của điểm điểm \(M\) biểu diễn $z$ đến điểm \(A(2,0)\). Ta thấy $MA$ max khi $M$ là giao điểm của $AI$ với đường tròn $(I)$

Ta có \(IA=\sqrt{IO^2+OA^2}=\sqrt{5}\)

\(\Rightarrow MA_{\max}=MI+IA=2+\sqrt{5}\)

Đáp án A.

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít

12 tháng 3 2022

tui ne2