Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia thành hai bài toán nhỏ
Bài 1, $R$ thay đổi để $U_{RL}$ không đổi, bài này quen thuộc rồi, ta được : $Z_{C_1}=2Z_L=400 \Omega$
Bài toán 2: $C$ thay đổi để $I_{max}$ là cộng hưởng thì $Z_C=Z_L=200 \Omega$
Vậy cần tăng tụ C thêm $\dfrac{10^{-4}}{4\pi}F$
\(Z_L=Z\omega=L.2\pi f_1\rightarrow L=\frac{36}{2\pi f_1}\)
\(Z_C=\frac{1}{C.2\pi f_1}\rightarrow C=\frac{1}{144.2\pi.f_1}\)
khi \(f=f_2\) cường độ dòng điện cùng pha với hiệu điện thế tức là xảy ra cộng hưởng
\(\omega^2_2=\frac{1}{LC}\Leftrightarrow\frac{36}{144.f^2_1}=\frac{1}{120^2}\rightarrow f_1=60Hz\)
\(i=2cos\left(100\pi t-\frac{3\pi}{4}\right)\)
\(\varphi=\varphi_u-\varphi_i=\frac{3\pi}{4}\Rightarrow tan\varphi=-1\)
nên mạch có tính dung kháng suy ra mạch gồm R và C
ta có \(tan\varphi=\frac{-Z_c}{R}=-1\Rightarrow Z_c=R\)(1)
lại có \(Z=\sqrt{R^2+Z_C^2}=\frac{U}{I}=50\)(2)
từ 1,2 suy ra R=Zc=5 \(\Omega\)
Đáp án D
+ Dung kháng của tụ điện tỉ lệ nghịch với tần số, do vậy khi tăng tần số của dòng điện dung kháng sẽ giảm.