Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Giả sử số thứ tự trong danh sách là
Do dãy này là cấp số cộng nên ta có .
Số phần tử của không gian mẫu là n ( Ω ) = 10!
Gọi A là biến cố “Tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau”. Để biến cố này xảy ra ta thực hiện liên tiếp các bước sau:
Bước 1: xếp thứ tự 5 cặp học sinh có các cặp số thứ tự là vào trước 5 cặp ghế đối diện nhau. Bước này có 5! cách.
Bước 2: xếp từng cặp một ngồi vào cặp ghế đối diện đã ) Chọn ở bước 1. Bước này có 2 5 cách.
Suy ra số kết quả thuận lợi cho biến cố A là 5!. 2 5 .
Vậy xác suất của biến cố A là
Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D
D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.
Chọn C
Số phần tử của không gian mẫu: .
Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.
Giả sử đánh vị trí ngồi như bảng sau:
Cách 1: Xếp vị trí A 1 có 10 cách. Mỗi cách xếp vị trí A 1 sẽ có 5 cách xếp vị trí B 1 .
Mỗi cách xếp vị trí A 1 , B 1 có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .
Cứ làm như vậy thì số cách xếp thỏa mãn biến cố là:
Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5
Xếp bạn nam vào 5 cặp ghế có 5! cách.
Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.
Số phần tử của A là:
Chọn D
Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có cách.
Đánh số ghế lần lượt từ 1 đến 10.
Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:
Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.
Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.
Vậy có tất cả 2. ( 5 ! ) 2 cách.
Xác suất cần tìm bằng
Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.
Ta chia hai dãy ghế thành 5 cặp ghế đối diện:
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.
Vậy có tất cả cách xếp thỏa mãn.
Xác suất cần tìm bằng
Chọn B
Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra n ( Ω ) = 8!
Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:
Dãy 1:
1 |
2 |
3 |
4 |
Dãy 2:
8 |
7 |
6 |
5 |
Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:
Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.
Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.
Do đó n(A) = 2.4!.4!
Vậy xác suất của biến cố A là
Chọn A.
Số phần tử của không gian mẫu là n(W =) 6!.
Gọi A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ : 3! cách.
Theo quy tắc nhân ta có cách
Chọn B.
Giả sử số thứ tự trong danh sách là
Do dãy này là cấp số cộng nên ta có
Số phần tử của không gian mẫu là
Gọi A là biến cố “Tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau”. Để biến cố này xảy ra ta thực hiện liên tiếp các bước sau:
Bước 1: xếp thứ tự cặp học sinh có các cặp số thứ tự là
vào trước cặp ghế đối diện nhau. Bước này có 5! cách.
Bước 2: xếp từng cặp một ngồi vào cặp ghế đối diện đã ) Chọn ở bước . Bước này có 2 5 cách.
Suy ra số kết quả thuận lợi cho biến cố A là
Vậy xác suất của biến cố A là