Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: n P → = 1 ; 1 ; 1 ; A B → = 1 ; 2 ; − 1 Do mặt phẳng Q chứa A,B và vuông góc với mặt phẳng P ⇒ n Q → = n P → ; A B → = − 3 ; 2 ; 1 . Do đó Q : 3 x − 2 y − z − 3 = 0.
Đáp án A
Khi đó đường thẳng d vuông góc với ∆ tại A. Chọn u d → = u Δ → , n P → = − 1 ; 6 ; 4 .
Như vậy (Q) là mặt phẳng chứa hai đường thẳng cắt nhau a và ∆ .
Do đó (Q) đi qua A và nhận vectơ u Q → = u Δ → , u d → = 10 ; − 7 ; 13 .
Phương trình mặt phẳng Q : 10 x − 2 − 7 y − 1 + 13 z = 0 ⇔ 10 x − 7 y + 13 z − 13 = 0
Đáp án B
Gọi A = ∆ ∩ P ; d = P ∩ Q
Lấy I ∈ ∆ ⇒ A ; I cố định, kẻ I H ⊥ P ; H K ⊥ d ⇒ P ; Q ^ = I K H ^ = φ
Do I A ≥ I K ⇒ sin φ = I H I K ≥ I H I A ⇒ φ m i n khi K ≡ A tức là I A ⊥ d ⇒ n Q → = u ∆ → ; u d →
Trong đó n ∆ ¯ = 1 ; - 2 ; - 2 ; u d ¯ = u ∆ ¯ ; u P ¯ = 3 ; 0 ; 3 = 3 1 ; 0 ; 1
Suy ra n Q ¯ = u ∆ ¯ ; u d ¯ = - 2 1 ; 1 ; - 1 , mặt khác (Q) chứa đường thẳng ∆ nên (Q) đi qua điểm (1;2;-1)
Do đó Q : x + y - z - 4 = 0 ⇒ A 4 ; 0 ; 0 , B ( 0 ; 4 ; 0 ) , C ( 0 ; 0 ; - 4 ) ⇒ V O . A B C = 64 6 = 32 3
Đáp án D.