Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi G là trọng tâm Δ A B C khi đó G 2 ; 1 ; − 3
Ta có M A → + M B → + M C → = 3 M G → = 3 M G đạt giá trị nhỏ nhất khi M là hình chiếu của G 2 ; 1 ; − 3 liên tục Ox. Suy ra M 2 ; 0 ; 0
Kiểm tra thấy A và B nằm khác phía so với mặt phẳng (P)
Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 )
Lại có M A - M B = M A - M B ' ≤ A B ' = c o n s t .
Vậy M A - M B đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).
Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .
Tọa độ điểm M ứng với tham số t là nghiệm của phương trình
1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6
Suy ra a = -2; b = -3; c = 6
Vậy a + b + c = 1
Đáp án A
Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:
Vì suy ra A M → = ( t - 2 ; 4 - 2 t ; 2 t ) B M → = ( t ; 2 - 2 t ; 2 t - 2 )
Khi đó
Dễ thấy
Vậy Tmin = 10. Dấu bằng xảy ra khi và chỉ khi t = 1 => M(2;0;5)
Đáp án là B