Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H,I lần lượt là hình chiếu vuông góc của O lên (P) và ∆ .
Ta có d ( O; ∆ ) = OI ≥ OH. Dấu “=” xảy ra khi I = H.
Đường thẳng OH qua O ( 0;0;0 ) nhận n → = ( 1;2;1 ) làm vectơ chỉ phương nên có phương trình là x = t y = 2 t z = t
Mặt phẳng (P) có phương trình: x + 2y + z - 6 = 0.
Từ hai phương trình trên suy ra t = 1 nên H ( 1;2;1 ).
Khi đó (Q) là mặt phẳng chứa d và đi qua H.
Ta có M ( 1;1;2 ) ∈ d , vectơ chỉ phương của d là u → = ( 1;1;-2 ); H M → = ( 0;-1;1 ).
Suy ra vectơ pháp tuyến của (Q) là n → = n → ; H M → = ( -1;-1;-1 ) . Hơn nữa (Q) qua điểm M ( 1;1;2 ) nên (Q) có phương trình là:x + y + z - 4 = 0
Đáp án C
Đáp án D.
(P )//( α ) ⇒ ( P ) : 2 x − 2 y − z + c = 0 (c ≠ 14)
(S) có tâm I ( 1 ; 2 ; 3 ) , bán kính R=5
Hình tròn thiết diện (C) có S = 16 π =>Bán kính r = 4
Gọi H là hình chiếu của I lên (P) =>H là tâm của (C)
⇒ I H = d ( I ; ( P ) ) = R 2 − r 2 = 3
⇒ 2.1 − 2.2 − 3 + c 2 2 + 2 2 + 1 2 = 3 ⇔ c − 5 = 9 ⇔ c = 14 ( 1 ) c = − 4 ⇒ ( P ) : 2 x − 2 y − z − 4 = 0