Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
Đây nè:
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
d/
Đặt \(sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\) \(\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-t^2}{2}\)
Pt trở thành:
\(6t-1=\frac{1-t^2}{2}\)
\(\Leftrightarrow t^2+12t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{39}-6\\t=-\sqrt{39}-6< -\sqrt{2}\left(l\right)\end{matrix}\right.\) (ủa giáo viên ra đề ngẫu nhiên à?)
\(\Rightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{39}-6}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\\x-\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)
\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)
\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(2tan^2x+3+4tanx-1-tan^2x=0\)
\(\Leftrightarrow tan^2x+4tanx+2=0\)
\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)
\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)
c/
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)
Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)+sinx.cosx-1=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=1\\sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\frac{1}{2}sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin2x=2\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=cos2x\)
\(\Leftrightarrow cos2x=cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\frac{\pi}{3}+k2\pi\\2x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow\sqrt{3}cosx-3sinx=2sin5x-2sinx\)
\(\Leftrightarrow\sqrt{3}cosx-sinx=2sin5x\)
\(\Leftrightarrow-\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=sin5x\)
\(\Leftrightarrow sin5x=-sin\left(x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{3}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{3}-x+k2\pi\\5x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Do \(\left\{{}\begin{matrix}-1\le sinx\le1\\-1\le cosx\le1\end{matrix}\right.\)
Nên chỉ có pt \(cosx+1=0\Leftrightarrow cosx=-1\) có nghiệm
Khi đó \(x=-\pi+k2\pi\)
d.
\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
e.
\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.a.
ĐKXĐ: ...
\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ne k\pi\)
\(1-sin2x=2sin^2x\)
\(\Leftrightarrow1-2sin^2x-sin2x=0\)
\(\Leftrightarrow cos2x-sin2x=0\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow...\)
\(cos\left(\frac{x}{2}+15^0\right)=sinx=cos\left(90^0-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}+15^0=90^0-x+k360^0\\\frac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)
Với \(k=1\Rightarrow x=290^0\)
Bài 2:
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-cos^2x-sin^2x=0\)
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-1=0\)
\(\Leftrightarrow2sinx\left(cosx+1\right)-\left(cosx+1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\) đáp án B
3/ \(y=\frac{sinx+cosx-1}{sinx-cosx+3}\)
\(\Leftrightarrow y.sinx-y.cosx+3y=sinx+cosx-1\)
\(\Leftrightarrow\left(y-1\right)sinx-\left(y+1\right)cosx=-3y-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-1\right)^2+\left(y+1\right)^2\ge\left(-3y-1\right)^2\)
\(\Leftrightarrow7y^2+6y-1\le0\)
\(\Rightarrow-1\le y\le\frac{1}{7}\Rightarrow y_{max}=\frac{1}{7}\)
Đáp án C