K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Chọn B.

Điều kiện : 

Ta có

Xét hàm số   có   với mọi 

Suy ra f(t) là hàm số nghịch biến trên khoảng (-1; 0) (0; 1)

Mà 

Lại có  nên 

Vậy tổng cần tính là 

20 tháng 6 2016

\(\int\frac{1+sin2x+cos2x}{sinx+cosx}dx\)

\(=\int\frac{sin^2x+cos^2x+2sinxcosx+cos^2x-sin^2x}{sinx+cosx}dx\)

\(=\int\frac{\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}dx\)

\(=\int\left(sinx+cosx+cosx-sinx\right)dx=\int2cosxdx=2sinx\)

20 tháng 6 2016

bạn tự thay cận vào nhé

 

NV
21 tháng 11 2018

1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm

b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng

Lấy ln hai vế:

\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)

\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)

\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)

\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)

\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)

\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)

2/ Pt đã cho tương đương:

\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)

\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)

Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))

\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)

\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)

\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

1.Tính các giá trị biểu thức...
Đọc tiếp

1.Tính các giá trị biểu thức sau:

a)510000.log52-59999.log52-...-53.log52-52.log52=?

b)(x2+1).4100000-(x2+1).499999,5-...-(x2+1).43.5-(x2+1).43=?

c)(π+e).256500000-(π+e).256499999.875-...-(π+e).2561.125-256(π+e)=?

d)(\(\frac{1}{\pi}\).1650000-\(\frac{1}{\pi}\).1649999.75-...-\(\frac{1}{\pi}\).162.25-\(\frac{1}{\pi}\).162).(π.4150000-π.4149999.5-...-π.44.5-π.44)=?

e)(x-2).(\(\sqrt{x+1}\))100000-(x-2).(\(\sqrt{x+1}\))99999.5-...-(x-2).(\(\sqrt{x+1}\))4.5-(x-2).(\(\sqrt{x+1}\))4=?

f)(1/x)5.(1/2)-150000-(1/x)5.(1/2)-149999-...-(1/x)5.(1/2)-6-(1/x)5.(1/2)-5=?

2.Giải ptrình bậc cao sau:

a)x.(x2+y)150000-x.(x2+y)149999-...-x.(x2+y)2-x3-xy-2=0

b)xy(2y+1)50000-xy(2y+1)49999-...-xy(2y+1)2-2xy2-3=0

c)x2(x+1)10000-x2(x+1)9999-...-x2(x+1)2-x2(x+1)-x2-1=0

d)x.(\(\sqrt{x+1}\))10000-x.(\(\sqrt{x+1}\))9998-...-x.(\(\sqrt{x+1}\))4-x-3=0

e)x50000-x49998-x49996-x49994-...-x8-x6-x4-x2-2=0

f)1+x+x2+...+x49998+x49999+x50000=0

g)(-2x)500000-(-2x)499999-...-(-2x)2+2(x-1)=0

h)(2x)100000-(x2)99999.5-...-(2x)1-(x2)0.5-2=0

i)cos(-x-1)100000+sin(-x-1)99999-cos(-x-1)99998+...-cos(-x-1)2+sin(-x-1)-1=0

k)(22^x)100000-(22^x)99999.99805-...-(22^x)0.001953125-2=0

l)(e3x/8x/3)250000-(e3x/8x/3)249999-...-(e3x/8x/3)2-e3x/8x/3-2=0

3.Tính giá trị tại vị trí gián đoạn sau:

a)250000-249999-...-24-23=?Biết gián đoạn tại vị trí thứ 4

b)710000.log72-79999.log72-...-72.log72-7log72=?Biết gián đoạn tại vị trí 3->5

c)22+23+...+24999+25000=?Biết gián đoạn tại vị trí thứ 350 và vị trí 600

4.Thực hiện các yêu cầu sau:

Cho pt M:        x.(x+1)50000-x.(x+1)49999-...-x.(x+1)3-x.(x+1)2-n=0

a.Xác định x=?

b.Tính n=?

c.Số nào dưới đây là số nguyên tố:

A.n+1/n-1

B.n+2/n-2

C.n+3/n-3

D.n+4/n-4

d.Xác định phương trình đồng dạng bậc 20(¶20)?

5.Cho ptrình bậc 2 sau:x2-2x=0

a.Xác định hàm P=?

A.P=(x-1)2(x^2-2x)   B.P=(x2-2x)/(x2-2x)  C.P=2xx^2  D.(x2-2x)x^2-2x

b.Xác định hàm P(x)?Biết Q(x)=2x+1

A.P(x)=2x  B.P(x)=2.(x+1)  C.P(x)=2.(x+2)  D.P(x)=2.(x+3)

c.Tính lim(P/Q(x))=?

A.0  B.1  C.2  D.3

d.Ptrình bậc cao:250000-249999-...-22-21 ~ vs hàm nào cuả pt bậc 2?

A.2P=2(x-1)x^2-2x  B.2P=2.x2.2x  C.2P=2.22x   D.2P=2.42x

e.Đồ thị hàm bậc cao nằm trên:

A.Trục tung  B.Trục hoành  C.A,B đúng  D.A,C sai

f.Khi nào P=P(x)?

A.Q(x)=0  B.P(x)=0  C.P=0  D.Q(x)=P

g.Hãy biến ptrình bậc 3 sau về ptrình bậc cao:x3-x=0?

A.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3-x=0

B.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3+x=0

C.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3-x=0

D.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3+x=0

h.Từ ptrình bậc 3 ở câu g so sánh P1=(x+e)x^3-x và P2=(x+e)3.(x^3-x)

A.P1>P2  B.P1=P2  C.P1<P2  D.P1~P2

i.Từ câu h,hãy tính giá trị biểu thức sin(P1-1)+cos(P2-1)+tan(P1P2-P1-P2+1)=?

A.-3    B.-1   C.1   D.3

6.Khai triển luỹ thừa bậc cao sau sang hàm bậc cao:  42949672961000000000?

7.Giải hệ ptrình:

Cho \(\alpha\)=\(\delta\)=25650000-25649999.875-...-2560.125-1

         \(\beta\)=\(\mu\)=4100000-499999.5-...-4-40.5

         \(\xi\)=\(\sigma\)=16500000-16499999.75-...-160.75-160.5

\(\hept{\begin{cases}\alpha\chi+\beta\gamma=\xi\\\sigma\chi+\mu\gamma=\delta\end{cases}}\)

8.Trả lời câu hỏi sau:

a.Công thức tìm cơ số tiêu chuẩn cuả hàm bậc cao là:

A.22^x   B.44^x   C.1616^x  D.256256^x

b.Độ biến thiên theo cơ số tiêu chuẩn cuả hàm bậc cao là:

A.1/2x   B.1/4x  C.1/16x  D.1/256x

c.Cho cơ số a=1,157920892.1077 ứng với độ biến thiên nào sau đây:

A.1/16  B.1/256  C.1/65536  D.1/16777216

d.Cho độ biến thiên ∆=1/250000 ứng vs cơ số tiêu chuẩn nào sau đây:

A.22^50000  B.44^25000  C.1616^12500  D.256256^6250

e.Giá trị cuả hằng số trực chuẩn là:

A.0  B.1  C.2  D.3

f.Miền trực chuẩn bất định ¢(a,∆)(a khác 0,1,2) được tính theo cthức nào sau đây:

A.¢(a,∆)=a.∆x  B.¢(a,∆)=a.∆1/x  C.¢(a,∆)=1/a.∆x  D.¢(a,∆)=1/a.∆1/x

g.Miền trực chuẩn bất định ¢(a,∆)(a khác 0,1,2) luôn dần về:

A.0  B.1  C.2  D.3

h.Miền trực chuẩn cố định ¢(a,∆)(a=0;a=1;a=2) luôn dần về:

A.a  B.∆  C.0  D.1

i.Một phương trình bậc cao có nghiệm khi và chỉ khi:

A.Có cùng cơ số ứng với độ biến thiên,có cùng hệ số,miền trực chuẩn luôn dần về một giá trị cố định không thay đổi,không có tính đồng dạng

B.Có cùng cơ số ứng với độ biến thiên,có cùng hệ số,miền trực chuẩn luôn dần về giá trị cố định không thay đổi,có tính đồng dạng

C.Có cùng cơ số ứng với độ biến thiên bất kì,các hệ số bất kì,miền trực chuẩn luôn dần về giá trị cố định không thay đổi,có tính đồng dạng

D.Có cùng cơ số ứng với độ biến thiên bất kì,các hệ số bất kì,miền trực chuẩn luôn dần về giá trị xác định không thay đổi,không có tính đồng dạng

k.Giá trị biên dưới cuả miền trực chuẩn ¢(65536;1/16) để giá trị đạt giá trị đạt hằng số trực chuẩn tuyệt đối:

A.3   B.33  C.83  D.163

(Chú ý tuyệt đối=0,tương đối~0)

l.Xét ptrình sau:5.(x+y)50000-6.(x+y)49999-3.(x+y)49998-...-2(x+y)2-4.(x+y)-2=0

A.Ptrình vô nghiệm B.Ptrình vô số nghiệm C.Phương trình có 1 nghiệm D.Ptrình 50000 nghiệm phân biệt

 

 

Giúp mik với!!!

0
Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được: a) \(I=2ln\left(x\right)\) b) \(I=ln\left(xe\right)^{ln\left(x\right)}\) c) \(I=ln\left(x^{lnx}e\right)\) d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\) Câu 2: Hàm số nào sau đây không có cự trị: a) \(y=\frac{2+x^2}{x^2-4}\) b) \(y=x^8+x^6+2x^4-4x^2-x+1\) c) \(y=sin\left(cos\left(x\right)\right)\) d) \(y=x^3+2x^2+\sqrt{x}\) Câu 3: Cho đồ thị \(\left(C\right):\)...
Đọc tiếp

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:

a) \(I=2ln\left(x\right)\)

b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)

c) \(I=ln\left(x^{lnx}e\right)\)

d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)

Câu 2: Hàm số nào sau đây không có cự trị:

a) \(y=\frac{2+x^2}{x^2-4}\)

b) \(y=x^8+x^6+2x^4-4x^2-x+1\)

c) \(y=sin\left(cos\left(x\right)\right)\)

d) \(y=x^3+2x^2+\sqrt{x}\)

Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)

b)\(\left[-2;4\right]\)

c) \(\left(4;+\infty\right)\)

d) Không tồn tại giá trị m

Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\)\(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:

a) \(a-b+c+d=0\)

b) \(c=\frac{1}{d}\)

c) \(\left(a-b\right)\left(c+d\right)=0\)

d) \(a+b=35c^2+35d\)

Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0

b) 1

c) 2

d) Đáp án khác

2
NV
5 tháng 2 2020

Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)

Chắc là cái đầu, vậy ta biến đổi được:

\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)

Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị

Câu 3:

Phương trình hoành độ giao điểm:

\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)

\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)

Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)

Do đó ko tồn tại m thỏa mãn

NV
5 tháng 2 2020

Câu 4:

\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)

\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)

\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)

Đáp án b sai

29 tháng 5 2017

22 tháng 3 2019

Chọn A.

Phương trình 

Xét hàm số f(t) = 2017t + t ;  ta có f’(t) = 2017tln2017 + 1 > 0 mọi x

Suy ra hàm số đồng biến trên R.

Nhận thấy (*) có dạng  f( sin2x) = f(cos2x) ; do đó: sin2x = cos2x

Vì 

1 tháng 2 2018

Với điều kiện \(\left(m-2\cos x\right)\left(m-2\sin x\right)\ne0\) (*) phương trình đã cho tương đương với

\(\left(m\sin x-2\right)\left(m-2\sin x\right)=\left(m\cos x-2\right)=\left(m-2\cos x\right)\)

\(\Leftrightarrow m^2\sin x-2m-2m\sin^2x+4\sin x=m^2\cos x-2m-2m\cos^2x+4\cos x\)

\(\Leftrightarrow2m\left(\cos^2x-\sin^2x\right)-m^2\left(\cos x-\sin x\right)-4\left(\cos x-\sin x\right)=0\)

\(\Leftrightarrow\left(\cos x-\sin x\right)\left(2m\left(\cos x+\sin x\right)-m^2-4\right)=0\) (1)

a) Nếu \(m=0\) thì (1) \(\Leftrightarrow\cos x-\sin x=0\)\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi \(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)

\(\Leftrightarrow\left(0-\left(-1\right)^k\sqrt{2}\right)\left(0-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow\left(-1\right)^k\sqrt{2}=0\) , vô lí.

Vậy khi \(m=0\), phương trình đã cho có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\)

b) Nếu \(m\ne0\) thì (1) tương đương với tập hợp hai phương trình:

\(\tan x=1\) (2) và \(\sqrt{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m}\)\(\Leftrightarrow\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m\sqrt{2}}\) (3)

Trong đó phương trình (3) vô nghiệm vì \(\left|\dfrac{m^2+4}{2m\sqrt{2}}\right|=\dfrac{m^2+4}{2\sqrt{2}\left|m\right|}\ge\dfrac{2\sqrt{4m^2}}{2\sqrt{2}\left|m\right|}=\sqrt{2}>1\).

Phương trình (2) có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi

\(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)\(\Leftrightarrow\left(m-\left(-1\right)^k\sqrt{2}\right)\left(m-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow m=\left(-1\right)^k\sqrt{2}\), trái giả thiết \(m\ne\pm\sqrt{2}\).

Tóm lại, trong mọi trường hợp phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+k\pi\) Điều kiện \(x\in[20\pi;30\pi]\) tương đương với \(20\pi\le\dfrac{\pi}{4}+k\pi\le30\pi\)\(\Leftrightarrow20-\dfrac{1}{4}\le k\le30-\dfrac{1}{4}\)\(\Leftrightarrow k=21;22;23;...;29\). Số nghiệm của phương trình trong đoạn đang xét là 9.

9 tháng 6 2018

Đáp án A

 

2 tháng 4 2017

Ta có:

f(x) = ax2 – 2(a + 1)x + a + 2 = (x – 1)(ax – a- 2) nên phương trình f(x) = 0 luôn có hai nghiệm thực là:

x = 1, x=a+2ax=a+2a

Theo định lí Vi-et, tổng và tích của các nghiệm đó là:

S=2a+2a,P=a+2aS=2a+2a,P=a+2a

1. Khảo sát sự biến thiên và vẽ đồ thị hàm số S=2a+2a=2+2aS=2a+2a=2+2a

- Tập xác định : (-∞, 0)∪ (0, +∞)

- Sự biến thiên: S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞)S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞) nên hàm số nghịch biến trên hai khoảng (-∞, 0) và (0, +∞)

- Cực trị: Hàm số không có cực trị

- Giới hạn tại vô cực và tiệm cận ngang

lima→+∞S=lima→+∞(2+2a)=2lima→−∞S=lima→−∞(2+2a)=2lima→+∞⁡S=lima→+∞⁡(2+2a)=2lima→−∞⁡S=lima→−∞⁡(2+2a)=2

Vậy S = 2 là tiệm cận ngang

- Giới hạn vô cực và tiệm cận đứng:

lima→0+S=lima→0+(2+2a)=+∞lima→0−S=lima→0−(2+2a)=−∞lima→0+⁡S=lima→0+⁡(2+2a)=+∞lima→0−⁡S=lima→0−⁡(2+2a)=−∞

Vậy a = 0 là tiệm cận đứng.

- Bảng biến thiên:

Đồ thị hàm số:

Đồ thị không cắt trục tung, cắt trục hoành tại a = -1

2) Khảo sát sự biến thiên và vẽ đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a

Tập xác định: D = R\{0}

S′=−2a2<0,∀a∈DS′=−2a2<0,∀a∈D

lima→0−S=−∞lima→0−⁡S=−∞⇒ Tiệm cận đứng: a = 0

lima→±∞S=1lima→±∞⁡S=1⇒ Tiệm cận ngang: S = 1

Đồ thị hàm số:

Ngoài ra: đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a có thể nhận được bằng cách tịnh tiến đồ thị S=2a+2a=2+2aS=2a+2a=2+2a dọc theo trục tung xuống phía dưới 1 đơn vị.