K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

Tính tổng :

a) 12+322+523+....+2n12n12+322+523+....+2n−12n

b) 1222+3242+....+(1)n1.n\(^2\)

Giải

a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)

ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)

b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1

Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....

Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.


Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

20 tháng 4 2016

Ta có : \(S=\left(4+2+\frac{1}{4}\right)+\left(16+2+\frac{1}{16}\right)+..+\left(2^{2n}+2+\frac{1}{2^{2n}}\right)\)

              \(=\left(4+16+...+2^{2n}\right)+2n+\left(\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{2^{2n}}\right)\)

Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân \(S_n=u_1\frac{q^n-1}{q-1}\)

\(S=4.\frac{4^{n-1}}{3}+2n+\frac{1}{4}.\frac{2^{\frac{1}{2n}}-1}{\frac{1}{4}-1}=4.\frac{4^n-1}{3}+2n+\frac{1}{3}.\frac{2^{2n}-1}{2^{2n}}\)

  \(=2n+\frac{4^n-1}{3}.\frac{4.4^n+1}{4^n}=2n+\frac{\left(4^n-1\right)\left(4^{n+1}+1\right)}{3.4^n}\)

30 tháng 1 2021

Tại sao lại cộng 2 vào vế S đầu tiên vậy

 

10 tháng 4 2017

S = 1 + 0,9 + 0,9^2 + ...+ 0,9^n + ...
S là tổng của csn có u1 = 1, q = 0,9 (có |q| < 1)
S = u1 / (1 - q) = 1 / (1 - 0,9) = 10.

20 tháng 12 2019

B