K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Đây là ba đơn thức đồng dạng, nên tổng của chúng là:

Giải bài 21 trang 36 SGK Toán 7 Tập 2 | Giải toán lớp 7

 

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

14 tháng 3 2017

Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)

\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)

\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)

\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)

\(\Rightarrow P=123.\dfrac{1}{45}-3\)

\(\Rightarrow P=-\dfrac{4}{15}\)

14 tháng 3 2017

cảm ơn bạn nha

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

16 tháng 3 2017

Bạn thay x, y, z vào đơn thức là được mà! Mấy đơn thức này còn thu gọn rồi! Bạn tự làm đi

6 tháng 2 2020

a , thay vào

=> 15 . 8 . -8 . 27 = -25920

các câu khác tương tự

NM
8 tháng 8 2021

ta có :

\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)

TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)

TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)

Bài 2:

a) Ta có: \(M=A\cdot B\)

\(=-2x^2z^3\cdot\frac{-5}{16}x^4y^3z^2\)

\(=\frac{5}{8}x^6y^3z^5\)

Hệ số của M là \(\frac{5}{6}\)

Phần biến của M là \(x^6;y^3;z^5\)

Bậc của M là 14

b) Thay x=1; y=-1 và z=1 vào biểu thức \(M=\frac{5}{8}x^6y^3z^5\), ta được:

\(\frac{5}{8}\cdot1^6\cdot\left(-1\right)^3\cdot1^5\)

\(=\frac{-5}{8}\)

Vậy: \(-\frac{5}{8}\) là giá trị của biểu thức \(M=\frac{5}{8}x^6y^3z^5\) tại x=1; y=-1 và z=1

13 tháng 4 2020

a)

B=\(4x^2y^2z\left(-3x^2z\right)\)

B=\(\left[4\left(-3\right)\right]\left(x^2x^2\right)y^2\left(zz\right)\)

B=\(-12x^4y^2z^2\)

=> \(\left\{{}\begin{matrix}Heso:-12\\Phanbien:x^4\\Bac:8\end{matrix}\right.y^2z^2\)

b)

Thay x=-2, y=-1, z=1 vào biểu thức B có:

B= \(-12\left(-2\right)^4\left(-1\right)^2\left(1\right)^2\)

B= \(-12.16.1.1\)

B= -192

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)