K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

\(\frac{-1}{2}\cdot17,5-\frac{2015}{2016}\cdot2018+\frac{1}{2}\cdot7,5+\frac{2015}{2016}\cdot2\)

\(=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)

\(=-\frac{1}{2}\cdot10-\frac{2015}{2016}\cdot2016=-5-2015=-2020\)

15 tháng 4 2020

Trả lời :

- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.

- Chúc bạn học tốt !

- Tk cho mk nha !

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

8 tháng 5 2018

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{1+\left(1+\frac{2016}{2}\right)+\left(1+\frac{2015}{3}\right)+...+\left(1+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=2018\)

8 tháng 5 2018

Ta có : 

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\left(\frac{2017}{1}-1-1-...-1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=2018\)

Vậy \(A=2018\)

Chúc bạn học tốt ~ 

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

5 tháng 5 2018

=.....nha các bn. k mình nha

5 tháng 5 2018

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

6 tháng 5 2019

có B=2015+2016+\(\frac{2017}{2016}\)+2017+2018

B=\(\frac{2015}{2015+2016+2017}\)+\(\frac{2016}{2016+2017+2018}\)+\(\frac{2017}{2016+2017+2018}\)

\(\frac{2015}{2016}\)>\(\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}\)>\(\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}\)>\(\frac{2017}{2016+2017+2018}\)

⇒A>B

Chúc bạn học tốt :")

6 tháng 5 2019

Dễ thấy B<1.

\(A=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)\)\(=3-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy A>2.

Vậy A>B.

4 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

28 tháng 5 2021
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau