Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=\(\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}\)
Vì 1\(\in\)Z nên Để A \(\in\)Z thì \(\frac{5}{\sqrt{x}+2}\in Z\)
Nghĩa là: \(\sqrt{x}+2\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Do đó:
\(\sqrt{x}+2\) | -1 | 1 | -5 | 5 |
\(\sqrt{x}\) | -3 | -1 | -7 | 3 |
\(x\) | (loại) | (loại) | (loại) | 9 |
Vậy với x=9 thì A \(\in\)Z
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
CAAU NÀY LÀM THEO CÁCH TÍNH CHIA HẾT NHÉ