K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Vì: \(\left(x-12+y\right)^{200}\ge0;\left(x-4-y\right)^{200}\ge0\)

=> \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\le0\)

\(\Leftrightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)

\(\Leftrightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=8\\y=4\end{cases}\)

9 tháng 10 2016

\(\left(x+1\right)^{200}=\left(2x-3\right)^{200}\)

\(\Rightarrow2x-x=1+3\)

\(\Rightarrow x=4\)

Vậy x = 4

9 tháng 10 2016

\(\left(x+1\right)^{200}=\left(2x-3\right)^{200}\)

\(\Rightarrow x+1=2x-3\)

\(\Rightarrow x-2x=-3-1\)

\(\Rightarrow-x=-4\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

24 tháng 7 2017

\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

đề sai câu b các câu sau áp dụng tương tự

24 tháng 7 2017

c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

28 tháng 10 2018

\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)

\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)

11 tháng 7 2018

\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)

Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)

a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)

11 tháng 7 2019

a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)

Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x

\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z

\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y

\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z

Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

câu b cách làm giống như câu a

5 tháng 8 2019

Làm đầy đủ hộ mình, mai nộp rùi

5 tháng 8 2019

a) \(5^{3x+1}=25^{x+2}\)

\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)

\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)

\(\Leftrightarrow3x+1=2x+4\)

\(\Leftrightarrow3x-2x=4-1\)

\(\Leftrightarrow x=3\)

12 tháng 7 2017

\(\left(x-y\right):\left(x+y\right):xy=1:7:24\)

\(\Rightarrow\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau đốt với hai tỉ số đầu ta có:

\(\frac{x-y}{1}=\frac{x+y}{7}=\frac{x-y+x+y}{1+7}=\frac{2x}{8}=\frac{x}{4}\)

Do đó \(\frac{x}{4}=\frac{xy}{24}\Rightarrow\frac{x}{xy}=\frac{4}{24}\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

Thay y = 6 vào (1) ta có:

\(\frac{x-6}{1}=\frac{x+6}{7}\)

=> 7(x - 6) = x + 6

=> 7x - 42 = x + 6

=> 7x - x = 6 + 42

=> 6x = 48

=> x = 8

Vậy x = 8, y = 6

5 tháng 2 2017

Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\)\(y+z=x\)

Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)

14 tháng 2 2017

Bạn có chắc ko?