K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Ta có: \(A=\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}=1\frac{2}{x+3}\)

=> Để biểu thức A đạt giá trị nguyên thì x+3 ϵ Ư(2)= { +1; +2}

* Nếu x+3= -1 => x= -1-3=-4;

* Nếu x+3= 1 => x= 1-3= -2;

* Nếu x+3= -2 => x= -2-3= -5;

* Nếu x+3= 2 => x= 2-3= -1

Vậy để biểu thức A đạt giá trị nguyên thì xϵ { -4; -2; -5; -1}

 

ĐKXĐ: \(x+3\ne0\\ x\ne-3\)

Để biểu thức A có giá trị nguyên thì \(\frac{x+5}{x+3}\)có giá trị nguyên.

\(=>x+3\inƯ\left(x+5\right)\)

 

29 tháng 4 2020

a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)

\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)

\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)

Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên

=> \(x-5⋮\)x+5

Ta có x-5=(x+5)-10

Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)

mà x nguyên => x+5 nguyên 

=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

ta có bảng

x+5-10-5-2-112510
x-15-10-7-6-4-305
ĐCĐKtmtmtmtmtmtmtmktm

Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên

22 tháng 7 2017

a) Phân thức nguyên 

<=> \(\sqrt{x}+1\)\(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}+2\) \(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}-3+5\)​ \(⋮\) \(2\sqrt{x}-3\)

<=> \(5\) \(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}-3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có bảng sau :

\(2\sqrt{x}-3\)1             -1          5           -5          
x4116    !!!

b) Có :

\(\frac{x+2007}{x}=1+\frac{2007}{x}\)

Phân thức nguyên 

<=> \(x\inƯ\left(2007\right)\)

 
12 tháng 11 2018

Thực hiện phép chia đa thức là ok =)))

12 tháng 11 2018

rõ ràng giùm mình ik

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

17 tháng 3 2019

a)     \(ĐKXĐ:x\ne-3;x\ne2\)

b)     \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

vậy \(P=\frac{x-4}{x-2}\)

\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)

\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)

mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)

mà theo ĐKXĐ:  \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)

thay mấy cái kia vào rồi tìm \(x\)

d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)

khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)

6 tháng 10 2019

x= 3.x+x

x3.x2=x1.x =x3

x=3++.x3

x=6.3xx=4

a x=5

b m=4.5.

x=4.5-.5.4 +6+

m se co gia tri lon nhat la.4.5.6-7+8

tu di ma tinh tui giai cho roi day neu muon day them goi 0637995421

6 tháng 10 2019

\(a,\)\(M=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\frac{3}{x^2+1}\)

\(b,M\in Z\Leftrightarrow\frac{3}{x^2+1}\in Z\)

\(\Rightarrow3\)\(⋮\)\(x^2+1\)\(\Rightarrow x^2+1\inƯ_3\)

Ta có \(Ư_3=\left\{\pm1;\pm3\right\}\)

Mà \(x^2+1\ge1\)với mọi x 

\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{2}\end{cases}}}\)

\(c,\)\(M_{max}\Leftrightarrow x^2+1\)nhỏ nhất \(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)

\(\Rightarrow M_{max}=3\Leftrightarrow x=0\)

15 tháng 6 2017

\(H=\frac{x^4+x^3+x^2+x-29}{x^2+1}=x^2+x-\frac{29}{x^2+1}\)

Để H nguyên thì \(x^2+1\)phải là ước nguyên dương của 29 hay

\(\left(x^2+1\right)=\left(1;29\right)\)

\(\Rightarrow x=0\)

20 tháng 6 2017

thanks bn nhiều