Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)
\(\Rightarrow y_{min}=y\left(1\right)=m-4\)
\(\Rightarrow m-4=0\Rightarrow m=4\)
4.
Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định
\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)
\(\Rightarrow m=\frac{41}{5}\)
Đáp án B
1.
\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến
\(m=y_{min}=y\left(0\right)=2\)
\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)
\(\Rightarrow M^2+m^2=\frac{41}{4}\)
2.
Hàm xác định trên \(\left[-2;2\right]\)
\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)
\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)
\(\Rightarrow N=-2;M=2\sqrt{2}\)
\(\Rightarrow M+2N=2\sqrt{2}-4\)
Bạn coi lại đề, GTLN của hàm số trên đoạn \(\left[-1;2\right]\) khi \(x=-1\) bằng 5 là sao nhỉ?
Phương trình hoành độ giao điểm của đồ thị và đường thẳng là \(-x+m=\frac{x^2-1}{x}\)
\(\Leftrightarrow2x^2-mx-1=0\) (*) (vì x = 0 không là nghiệm của (*))
Vì ac < 0 nên phương trình (*) luôn có 2 nghiệm phân biệt khác không
Do đó đồ thị và đường thẳng luôn cắt nhau tại hai điểm phân biệt :
\(A\left(x_1;-x_1+m\right);B\left(x_2;-x_2+m\right)\)
\(AB=4\Leftrightarrow\sqrt{\left(x_2-x_1\right)^2+\left(-x_2+m+x_1+m\right)^2}=4\)
\(\Leftrightarrow2\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_2x_1=8\)
Áp ụng định lý Viet ta có : \(\begin{cases}x_2+x_1=\frac{m}{2}\\x_2x_1=-\frac{1}{2}\end{cases}\)
\(AB=4\Leftrightarrow\frac{m^2}{4}+2=8\Leftrightarrow m=\pm2\sqrt{6}\)
Vậy \(m=\pm2\sqrt{6}\) là giá trị cần tìm
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Phương trình hoành độ giao điểm:
$x^2+2mx+1-3m=-2x+4\iff x^2+2x(m+1)-3-3m=0$.
$\Delta'=(m+1)^2+3+3m=(m+1)(m+4)$
Hai đồ thì cắt nhau tại hai điểm phân biệt $A,B$ khi và chỉ khi $\Delta'>0\iff (m+1)(m+4)>0(*)$.
Giả sử: $A(a;-2a+4);B(b;-2b+4),(AB)\equiv (d): y+2x-4=0$.
Theo $Viet$, ta có: $a+b=-2m-2;ab=-3-3m$.
Theo GT: $S_{OAB}=\frac{1}{2}.d(O,AB).AB(2)$.
Mà: $d(O;AB)=\frac{|-4|}{\sqrt{2^2+1^2}}=\frac{4}{\sqrt{5}}$.
$(2)\implies AB=\frac{2S_{OAB}}{d(O;AB)}=6\sqrt{10}$.
\iff AB^2=360\iff 5(a-b)^2=360\iff (a-b)^2=72\iff (a+b)^2-4ab=72$.
$\iff 4(m+1)^2+12(m+1)-72=0\iff m+1=3(n)...v...m+1=-6(n)(\text{ do (1) })$.
Vậy: $m=2...v...m=-7$ là hai giá trị cần tìm.
Ta có \(y'=3\left(x^2-m\right)\Rightarrow y'=0\Leftrightarrow x^2=m\)
Hàm số có 2 cực trị khi và chỉ khi \(m>0\). Khi đó tọa độ 2 điểm A, B là :
\(A\left(\sqrt{m}'-2m\sqrt{m}\right);B\left(-\sqrt{m};2m\sqrt{m}+2\right)\)
Suy ra \(\overrightarrow{AB}=\left(-2\sqrt{m};4m\sqrt{m}\right)\Rightarrow\overrightarrow{n}\left(2m;1\right)\) là vecto pháp tuyến của AB
Phương trình AB : 2mx + y -2 = 0
Suy ra \(d\left(I,AB\right)=\frac{\left|2m-1\right|}{\sqrt{1-4m^2}},AB=2\sqrt{m}.\sqrt{1+4m^2}\)
Do đó \(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I,AB\right)=\sqrt{m}\left|2m-1\right|\)
Mà \(S_{\Delta IAB}=\sqrt{18}\Rightarrow\sqrt{m}\left|2m-1\right|=\sqrt{18}\Rightarrow4m^3-4m^2+m-18=0\Leftrightarrow m=2\)
Vậy m = 2 là giá trị cần tìm
1.
Hàm trùng phương có đúng 1 cực trị khi:
TH1: \(a=m=0\)
TH2: \(ab=-m>0\Leftrightarrow m< 0\)
\(\Rightarrow m\le0\)
Đáp án B
2.
\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)
Hàm số có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)
\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)
\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với m a x [ - 1 , 2 ] = | m - 1 | ,
ta có m - 1 ≥ m + 3 | m - 1 | ≥ | m | | m - 1 | = 5
↔ | m - 1 | ≥ m + 3 | m - 1 | ≥ | m | m = - 4 ∨ m = 6 ↔ m = - 4
TH2: Với
m a x [ - 1 , 2 ] y = | m + 3 | ↔ | m + 3 | ≥ | m - 1 | | m + 3 | ≥ | m | | m + 3 | ≥ 5
↔ | m + 3 | ≥ | | m - 1 | | m + 3 | ≥ | m | m = 2 ∨ m = - 8 ↔ m = 2
TH3: Với
m a x [ - 1 , 2 ] y = | m | ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m | = 5 ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | m = 5 ∨ m = - 5
( vô nghiệm)
Chọn D.