K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Đáp án B

Ta có y ' = 3 x 2 + 3 3 a  

Hàm sổ có cực trị ⇔ y ' = 0  có 2 nghiệm phân biệt ⇔ a < 0 . 

Hàm s là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc tọa độ, do đó đưng thẳng nối cực đại và cực tiu của đồ thị hàm số luôn đi qua gốc tọa độ.

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

4 tháng 1 2020

Đáp án là A

4 tháng 12 2017

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

13 tháng 3 2017

Đáp án C

Phương trình có ba nghiệm phân biệt nếu  y c t < m < y c d ⇔ - 2 < m < 2

12 tháng 4 2019

Khi đó điểm cực đại của đồ thị hàm số là A(0;m) và tọa độ 2 điểm cực tiểu là

24 tháng 3 2019

Đáp án A

Ta có: 

Hàm số có 3 điểm cực trị khi m > –1

Ba điểm cực trị của đồ thị hàm số là ;