Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)
b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)
Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)
Điều kiện :
\(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)
\(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)
\(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)
\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)
Vậy tập xác định là D = [-2;-1) U (2;7]
Điều kiện xác định :
\(\begin{cases}x\ne\pm1\\\frac{1}{1-x}+\frac{1}{1+x}>0\\\log_2\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{2x}{1-x^2}>0\\\frac{2x}{1-x^2}\ge1\end{cases}\) \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{x^2+2x-1}{1-x^2}\ge0\end{cases}\)
Xét dấu đa thức \(P\left(x\right)=\frac{x^2+2x-1}{1-x^2}\) ta có :
x P(x) - 8 -1- căn 2 -1 -1 + căn 2 1 + 8 - + - + - 0 0
Vậy tập xác định của hàm số là : \(D=\)[ \(-1-\sqrt{2;-1}\) ) \(\cup\) (\(-1+\sqrt{2},1\) ]
a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)
Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)
Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)
Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)
\(\Leftrightarrow-3< x< x\)
Vậy tập xác định là \(D=\left(-3;2\right)\)
\(x^3+x>0\Leftrightarrow x>0\)
Vậy tập xác định \(D=\left(0;+\infty\right)\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
Điều kiện : \(\begin{cases}\ln\frac{1}{x-1}\ge0\\x-1>0\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{1}{x-1}\ge1\\x>1\end{cases}\) \(\Leftrightarrow1< x\le2\)
Vậy tập xác định : \(D=\) (1;2]
Hàm số xác định
⇔ 1 – x > 0
⇔ x < 1.
Vậy tập xác định D = (-∞; 1).