K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1  => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4  => R = 2

12 tháng 4 2016

I(2; -3); R = 4

12 tháng 4 2016

I (); R = 1

18 tháng 3 2016

2x2 + 2y2 - 5x - 4y + 1 + m2 = 0.<=> X^2+y^2-5/2x-2y+(1+m2)/2=0 
Tâm I(5/4;1) bán kính R=căn (41/16-(1+m2)/2) 

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

a) Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1 => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2

b) Tương tự, ta có : I \(\left(-\dfrac{1}{2};\dfrac{1}{4}\right)\); R = 1

c) I(2; -3); R = 4

18 tháng 3 2016

(C): x+ y2 + 2x + 2y - 1= 0

     => (x+1)2 +(y+1)2 =3   (1)

(C'): x2 + y2 -2x + 2y -7 =0

     => (x-1)2 +(y+1)2 =9   (2)

(1)(2) => (x-1)2 -(x+1)2 =6

         <=> -4x =6  suy ra x= \(\frac{-3}{2}\)

Thay x vào (2) ta có :   (y+1)2 = \(\frac{11}{4}\) suy ra y = -1 + \(\frac{\sqrt{11}}{2}\)   hoặc y= -1- \(\frac{\sqrt{11}}{2}\)

1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)