Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
a. Vì đa thức \(\left(5x^3-7x^2+x\right)\) chia hết cho \(3x^n\)
nên hạng tử x chia hết cho \(3x^n\Rightarrow0\le n\le1\)\(\Rightarrow n\in\left\{0;1\right\}\)
b. Vì đa thức \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)\) chia hết cho \(5x^ny^n\)
Nên hạng tử \(6x^2y^2\) chia hết cho \(5x^ny^n\Rightarrow0\le n\le2\Rightarrow x\in\left\{0;1;2\right\}\)
\(pkkikkkkkk\min\limits_{kkkkk\max\limits_{ }kkkk\lim\limits_{\rightarrow}kkkk\sqrt{ }kkk\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }}\)
Vì đa thức 13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2 chia hết cho 5 x n y n nên mỗi hạng tử của đa thức trên chia hết cho 5 x n y n Do đó, hạng tử 6 x 2 y 2 chia hết cho 5 x n y n ⇒ 0 ≤ n ≤ 2 . Vậy n ∈ {0;1;2}
x 4 : x n = x 4 - n là phép chia hết nên 4 – n ≥ 0 ⇒ 0 ≤ n ≤ 4
suy ra: n ∈ {0; 1; 2; 3; 4}
x n : x 3 = x n - 3 là phép chia hết nên n – 3 ≥ 0 ⇒ n ≥ 3