K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

31 tháng 3 2020

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

13 tháng 9 2017

\(a,\frac{16}{2^n}=2\Rightarrow2^n=16:2\Rightarrow2^n=8\Rightarrow2^n=2^3\Rightarrow n=3\)

\(b,\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=81.\left(-27\right)\Rightarrow\left(-3\right)^n=-2187\Rightarrow3^n=3^7\Rightarrow n=7\)

\(c,8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)

1 tháng 10 2017

\(a,\frac{16}{2^n}=2\)                                    \(b,\frac{\left(-3\right)^n}{81}=-27\)                                              \(c,8^n:2^n=4\)

\(\Rightarrow2^4=2^n.2\)                                 \(\Rightarrow\left(-3\right)^n=\left(-27\right).81\)                                \(\Rightarrow\left(8:2\right)^n=4\)

\(\Rightarrow4=n+1\)                                 \(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\)                                        \(\Rightarrow4^n=4\)

\(\Rightarrow n=4-1=3\)                         \(\Rightarrow n=7\)                                                                \(\Rightarrow n=1\)

11 tháng 9 2017

a) 162n=2 => \(\dfrac{2^4}{2^n}=2\Rightarrow2^{4-n}=2\Rightarrow4-n=1\Rightarrow n=3\)

b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)

c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)

11 tháng 9 2017

undefined => (-3)n-4 = (-3)3

=> n - 4 = 3 => n = 7

c) 8n : 2n = 4

4n = 4.

5 tháng 8 2016

a)

\(\frac{16}{2^x}=2\)

\(\Rightarrow2^{x+1}=16\)

\(\Rightarrow2^{x+1}=2^4\)

\(\Rightarrow x+1=4\)

\(\Rightarrow x=3\)

b)

\(\frac{\left(-3\right)^x}{81}=-27\)

\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)

\(\Rightarrow-3^x=-3^7\)

=> x=7

c)

\(8^n:2^n=4\)

\(\Rightarrow2^{3n}:2^n=4\)

\(\Rightarrow2^{3n-n}=4\)

\(\Rightarrow2^{2n}=2^2\)

=>2n=2

=>n=1

5 tháng 8 2016

a)\(\frac{16}{2^n}=2\)

=>16:2n=2

=>2n=16:2

=>2n=8

b)ko nhớ cách làm

c)8n:2n=4

=>(23)n:2n=22

=>23n:2n=22

=>23n-n=22

=>22n=22

=>2n=2

=>n=1

dc rùi chứ

23 tháng 1 2020

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

23 tháng 1 2020

N=34359738369 nha

30 tháng 6 2016

a) \(\frac{16}{2^n}=2\)

=> 16 = 2 . 2n 

=> 16 = 2n+1

=> 24 = 2n+1

=> n + 1 = 4

=> n = 4 - 1

=> n = 3

Vậy n = 3

b) \(\frac{\left(-3\right)^n}{81}=-27\)

=> (-3)n = -27 . 81

=> (-3)n = (-3)3 . (-3)4

=> (-3)n = (-3)7

=> n = 7

Vậy n = 7

c) 8n : 22 =  bao nhiêu vậy ban?

Chuk bn hk tốt!vui

30 tháng 6 2016

a)\(\frac{16}{2^n}=2\)

    \(\Rightarrow16:2=2^n\) 

         2n=8=23

Vậy n=3

b)\(\frac{\left(-3\right)^n}{81}=-27\)

  \(\Rightarrow\)(-3)n=-27.81

      (-3)n=-2187=(-3)7

Vậy n=7

c)Mk ko hiểu bn ghi gì

19 tháng 11 2021

Giải thích các bước giải:

a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,

DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,

ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o

⇒◊AMDN⇒◊AMDN là hình chữ nhật.

Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:

MD=√AD2−AM2=4cmMD=AD2−AM2=4cm

⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2

b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN

Mà AH⊥BCAH⊥BC

ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD

⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN

⇒ΔMHN⇒ΔMHN vuông tại HH

⇒ˆMHN=90o⇒MHN^=90o

c. Gọi G,IG,I là  trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC

⇒GI//BC⇒GI//BC

⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC

⇒E∈GI⇒E∈GI

⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.

19 tháng 11 2021

đây là đại số nha bạn

23 tháng 8 2015

\(\frac{16}{2^n}=1;2^n=8;n=3\)

\(\frac{\left(-3\right)^n}{81}=-27;\left(-3\right)^n=\left(-3\right)^7;n=7\)

\(8^n:2^n=4;\left(8:2\right)^n=4;4^n=4=4^1;n=1\)